Unsmoothing Real Estate Returns:
A Regime-switching Approach

Colin Lizieri® Stephen Satchell® Warapong Wongwachara'®
June 2010
WORK IN PROGRESS: PLEASE CONTACT AUTHORS FOR LATEST VERSION
Abstract

We propose newly developed unsmoothing techniques for appraisal-based real estate returns
which are based on a regime-switching Threshold Autoregressive (TAR) model. We first examine
analytically the conventional unsmoothing technique — which usually models the true returns by
a linear Autoregressive (AR) process — and show that when true returns follow a TAR process,
the conventional technique is misspecified, and hence underestimates the true variance. We
argue that misspecification of the true returns result in the unsmoothed returns still being “too
smooth”. The approach also solves an identification problem suffered by the conventional
method. Two exogenous variables, returns on the FT index and GDP growth, tend to outperform
other variables as a regime indicator, with both delivering relatively low sum of squared errors
(SSE). Furthermore, they appear to capture risks of downturns in real estate returns relatively
well. We extend our regime-switching idea to the smoothing equation, thereby allowing for the
switching behaviour by the appraiser. Doing so results in two new techniques, the TAR-AR and
TAR-TAR approaches. The last ‘co-switching’ specification, in particular, opens up to a new
frontier of empirical research. We estimated the TAR-TAR using the FT returns as the regime
indicator, and found results that outperform conventional smoothing models and have plausible
economic explanations
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Unsmoothing Real Estate Returns: A Regime-switching Approach
1. Introduction

Reported real estate returns differ from those of financial assets in that they rely on appraisals
to measure periodic capital growth and income return. It has been argued that this practice
results in “smoothing” of the reported returns. The temporal aggregation and lagging effects
produce serial correlation in return series, and dampen reported volatility measures. In turn,
this has implications for the use of real estate indices in asset allocation and performance
measurement applications (Quan & Quigley 1991%, Geltner et al. 2003).

Conventional appraisal-based unsmoothing methodology (Geltner 1991, 1993, Fisher et al.
1994, Cho et al. 2003, Booth & Marcato 2004, Marcato & Key 2007a,b) has been fairly
successful in the sense that it generates higher volatility in the unsmoothed returns than in the
observed ‘smoothed’ returns, and tends to reduce lagging effects when compared to public
listed real estate indices. These results have influenced investor attitudes on the risk of real
estate as an asset class. Further confirmation of this is provided by the development of repeat
sales transaction-based indices such as the MIT series for the US, which show significantly
higher variance of returns (see e.g. Fisher et al. 2003).

Nevertheless, a number of studies have shown that private real estate returns still appears to
have significantly better risk-hedging characteristics than other asset classes (e.g. Hudson-
Wilson et al. 2003, Worzala & Sirmans 2003, Bond et al. 2007b). Measures of volatility for
unsmoothed series still seem too low in relation to the returns of financial assets and the use of
unsmoothed data in conventional asset allocation optimisers produces weightings that out of
line with professional investor practice. This has been attributed to an additional ex ante
liquidity premium that is not accounted for in conventional returns (Bond et al., 2007a), to
investors’ inability to diversify away specific risk fully due to large lot size (Baum, 2009) or to
the distributional characteristics of real estate returns (Young, 2007).

In this paper, we argue that the conventional unsmoothing methodology is not completely
satisfactory because it ignores non-linearity in the data and regime-switching behaviour in
particular. Application of regime-switching models in financial markets is not uncommon (for
example there are applications to stock returns (Li & Lam 1995), to exchange rate changes (Alba
& Park 2005), and to property returns (Lizieri et al. 1998). Regime switching behaviour seems
highly plausible for real estate returns which exhibit episodes of booms and busts due to the

”

! Quan and Quigley seek to identify an “optimal” appraisal in the face of transaction noise; subsequent work has
tended to seek the “underlying” market return from the smoothed appraisal signal.
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cyclical nature of property and credit markets. Instead of modelling the underlying real estate
returns as an ARMA process, as in the previous studies, we employ a family of Threshold
Autoregressive (TAR) models (Tong 1978, 1990), in effect, allowing for some non-stationarity.
TAR models have been used in real estate applications previously (Lizieri et al. 1998, Brooks &
Maitland-Smith 1999): we provide an extension and application to return measurement.

Our prior expectation is that the unsmoothing methodology based on TAR models will provide
evidence of additional “built-in” volatility into real estate returns. In earlier research, Chaplin
(1997) attempted to incorporate regimes into the unsmoothing methodology. He assumed that
real estate returns were normally distributed, and divided them into six regimes with
predetermined unsmoothing parameters (his theoretical framework follows Quan and Quigley’s
approach, but the values are asserted not estimated)?. Our methodology is more general in two
main aspects. First, regimes may be defined in terms of property returns themselves (e.g. into
periods of high, average, and low returns as Chaplin (1997) does) or in terms of exogenous
variables driving property performance such as macroeconomic factors, credit conditions, and
similar factors. Second, the threshold value can be estimated, rather than imposed.

The rest of the paper is organised as follows. Section 2 reviews the base model for the
conventional unsmoothing technique. Then in Section 3 we set out how regimes can be
incorporated into the unsmoothing technique via TAR models. In support of the TAR approach,
we also present a misspecification analysis which shows that the conventional technique
underestimates the true variance provided that the true returns follow a TAR process. Section 4
provides empirical results of the proposed technique. Section 5 examines implications on asset
allocation exercises. Finally, we conclude and suggest further research.

% We should note also Brown & Matysiak (1997) who offer a smoothing model with a time varying alpha based on
rolling window serial correlations.
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2. Understanding the Base Model

2.1 The Measurement Equation

Consider a simple smoothing model:
K =ar’ +(1-a)r, (1)

where 1" denotes the reported valuation-based return at t, r, the “true” underlying return,
and o the smoothing parameter — which is a weight given to information about the prior
valuation, ae(O,l). From Equation (1), given the value for the smoothing parameter, the

unsmoothed returns can be computed by

1
r=——(r"—ar’,). (2)
t 1—(1( t t 1)
It is crucial for us to thoroughly understand the measurement equation. It gives an implicit
relationship between o and the unsmoothed volatility.

var(r’) [1— 2ap + aZ:.

R

) 3)

where p is the first-order autocorrelation coefficient of r,” which is observable. It can be

shown that

avar(r,)| _ 2var(r‘*)(1_p)(1_az)
Oa ‘ae(m) (1—0;)4

>0. (4)

The result shows that the implied variance is increasing in «, when the parameter lies between
zero and one. Artificially high values of alpha would inflate the variance, while too low values
would understate volatility in the underlying return series. This may be important where
researchers “assume” a value of alpha to desmooth an appraisal based series or where mis-
estimation of alpha occurs. This idea can be easily extended to the generalised measurement
equation, which includes more than a single lagged value of the observed returns.?

It is clear that, at this point, the variance implied by the smoothing equation has no direct
relationship with the assumed “true” returns. When the smoothing coefficient is known, it does

? See Appendix A.



not matter what assumption is made regarding the true return generating process. The true
returns generating process comes into the picture only when we attempt to estimate« .

2.2 The State Equation

The conventional method assumes that the true (unobservable) returns follow a stationary
AR(1) process:

r=0+¢r,+s, & ~iid(0,07), (5)
where ‘¢‘ <1 by assumption.

Using Equations (1) and (5), and given the value for ¢, the weight & can be estimated consistently by a

recursive procedure from an implied model of the observed returns
K =00-a)+(a+@)r —adr,+v, (6)

where V, :(1—0{)51. This residual term assumes ¢ as given, and varies with o alone, i.e.

V, =V, (a; @) . The least squares method gives
a=argmin > v’ (a;9). (7)
T

The unsmoothed returns will then be given by

rl=1_1&(n*—§zr(i1)- (8)

Anew ¢ is a least squared estimate of Equation (5),
$=argmin > &l (i), (9)
T

where at the moment the residual ¢, =¢&,(¢; ) varies with ¢ only. The recursion continues

until ¢3 converges — that is, when it differs from the previous value by an insignificant amount,
e.g. 0.01 (Cho et al. 2003). The same estimation procedure still applies to extensions of the
simple smoothing model, for example, to the inclusion of more lagged values of valuation based
returns in the measurement equation, or to the generalization of the true returns to an ARMA
process.

Now let us consider the variance of the reconstructed estimate of underlying returns. By
construction,

2

var(r,) = 10‘&2 . (10)

This has been argued to be too small a value as to reflect actual risks in the underlying asset. As
will be shown shortly, assuming the true returns follow a TAR process provides “built-in”
volatility, while the usual iterative estimation procedure is still applicable.

3. TAR Models

Here we set out how a regime-switching approach can be incorporated into smoothing models.
First, we will review the TAR model and its properties. Then we will show how to implement the
regime-based unsmoothing methodology.

3.1 TAR Process and Properties
Suppose now that the true returns follow a threshold autoregressive process, where we
suppress the intercepts to avoid excessive algebra:

r :{¢1r171+51v Z,>C, (11)
Shat+é, 7, SC
The model can be written succinctly as
n=(dla+a(1-1,))r,+a, & ~iid(0,07). (12)

Here z, is an observable (weakly) exogenous regime indicator, with the corresponding indicator
function I, =1(z, > ¢). We will call subsequently refer to ¢ as the ‘high state’ coefficient, and to
¢, as the ‘low state’ coefficient. This non-linear model, initially proposed by Tong (1978), splits

the time series of interest into subsets, or ‘regimes’ defined with respect to the value of some
regime indicator.* The variable Z, can be one of a range of variables known at timet.

Given c, the coefficients ¢ and ¢, can be estimated by applying OLS to Equation (12).

Otherwise, the threshold value can be estimated empirically as

¢=argmins(c), (13)

ceC

* Further discussion of TAR, as well as other regime-switching models, can be found in Tong (1990). Franses and
van Dijk (2000) provide an excellent textbook treatment on the subject.
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where C represents the set of all allowable threshold values, and o(c) the standard error of
regressions given the threshold value. A popular choice of C that ensures consistency requires
that each regime contains at least 15% of the number of observations (Franses and van Dijk,
2000). Other goodness of fit measures, e.g. the Akaike Information Criterion or Bayesian
Information Criterion, may be used instead.

In the above specification, we can compute the variance of r, using the Law of Iterated
Expectation.
o;

var(r,)—li(mu(li”)@z), (14)
where 7 denotes the steady-state probability of the first regime.> Comparing this to the
variance implied by the AR process in (10), we cannot tell whether or not the TAR approach will
imply greater underlying volatility, as the relative magnitude of the two variances is not
immediately clear. However, it is possible to show that, if the single-regime process is assumed,
but the true returns do exhibit regime-switching behaviour, then the implied AR variance will
be lower than the true variance. The misspecification analysis is presented in Appendix A, which
demonstrates that, in large samples at least, the variance calculated by assuming an AR(1)
process will be consistently underestimating the true variance.

3.2 Implementing the Unsmoothing Technique
Now we will present the implementation of our unsmoothing methodology, which is analogous
to that of the conventional technique (see e.g. Cho et al. 2003). The main difference between the

two techniques is that while the conventional one is linear, our model is non-linear.

Equations (1) and (12) imply the following process in the observed returns

(1-(Als+d (1-14))L)(A-al)r =, (15)

where L denotes a lag operator defined by Lx =X, and again v, =(1-a)&,. The recursion is
initialised by the values of (¢1°,¢§,c°). We then estimate the smoothing « in Equation (15),

given particular values of the three TAR parameters, by OLS. By using the estimated smoothing
coefficient @ and the measurement equation (2), we can compute the unsmoothed returns.

® The derivation of this is shown in Appendix B.

These reconstructed estimates of the underlying returns will then be modelled as a TAR

process. We estimate a new set of (¢1,¢2,c) as described in Section 3.2, with the estimated
threshold value being that which minimises the standard error of regression.® The new set of

(¢11,¢21,c1) will then be used in the next round of estimation, and the recursion stops when

(4. ¢,) converge in value. We will call this a AR-TAR process.

The formulation described above assumes that there exist different return regimes but a single
smoothing process and, hence, a single value of alpha. However, there may also exist
“smoothing regimes” where appraiser behaviour differs. For example, there may be periods
characterized by thin trading (typically these will be periods when prices are falling, as owners
with discretion may chose not to crystallize losses and retain their properties): in the absence of
dense transaction evidence, appraisers may be more prone to smooth than in market
environments with rich comparable evidence. While such smoothing regimes may coincide
with the return process regimes, there is no reason why they must coincide. Accordingly, we
separately define smoothing regimes via a TAR process, producing a double-TAR, or TAR-TAR
process. Generalising, we define:

Smoothing Equation: K=ok +(1-a)r, (16)
Returns Process: L=y +@l,+e, & ~iid(0,67). (17)

Here r” denotes the observed “smoothed” returns, I, the actual returns, ¢, the residual in the
returns process, @, the smoothing coefficient, y, the intercept term, and ¢, the persistence

coefficient. We allow the parameters to be regime-switching — hence the time subscript —
according to certain exogenous variables z, and z, as follows.

o, :{al' 2, >Cp, (18)
0y Ly SC.
(71v¢1)v Zy1> Gy,
4= 19
(71 ¢) {(72!¢2)1 212G, (19)

®in estimating the threshold value C, we use a grid search in our estimation since the search domain is of low
dimensionality.
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As before, the specification concerns the lagged value of the exogenous variables, and hence
the current regimes are observable. Parameters are estimated iteratively using a grid search
technique to identify the lowest sum of squared errors as in the AR-TAR formulation in (15)".

4. Data

Private real estate returns, defined as I represent the log difference of the IPD UK Total Return

Index for all property. We utilize monthly data from December 1986 to December 2008, thus
including the onset of the market correction at the end of the period. While the IPD monthly
index does not completely track the IPD annual index, it represents institutional and
professional investor holdings of real estate with a capital value of £32.5billion as at December
2008 and with in excess of 3,500 properties. Our analysis, however, utilizes quarterly returns.
First, a number of the macro-economic regime indicators are only available quarterly; second,
since monthly valuations frequently represent a simple desk-based update, and with greater
information available on a quarterly basis, this may represent a more robust frequency
compared to the more noisy monthly series.

The choice of exogenous regime indicators to be tested was based on prior research on the
drivers of private real estate returns. We include an interest rate variable, three month LIBOR
(end of month); most studies indicate that, as expected, real estate returns are strongly
influenced by interest rates. Indeed, prior applications of TAR models in real estate (Lizieri et
al., 1998; Brooks and Maitland-Smith, 1999) both use real interest rates to determine
thresholds. Lizieri et al. suggest that in the high interest rate environment, real estate exhibits
greater volatility and sharply falling values.

Many models of real estate rents and capital values utilize an aggregate demand measure: as a
result, we test UK GDP growth (available only as a quarterly series). This enables us to test
whether property and/or appraiser behaviour differs in boom and recessionary periods. As a
further indicator of macro-economic conditions, we examine service sector employment, which
might proxy for space demand. We also use a financial market indicator, the FT All Share Total
Return index. This can be justified as an extension of the market model (Ling and Naranjo 1997,
2000, Wike and Gillen 2008); furthermore, given the growing attention on tail dependence
(and, in particular, asymmetric tail dependence — see Knight et al. 200x for a real estate

7 We have also estimated models where the smoothing parameter varies by regime but where there is a single
returns generating process —a TAR-AR model. These results are shown in appendix X: we do not discuss them
here for reasons of length.
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example), upward and downward spikes in equity prices may be associated with capital market
conditions that are adverse or positive for real estate.

We include a property market indicator, the initial yield (the ratio of rent payable to capital
value). This is, in part, endogenous, in that the yield represents the cash return on investment
and changes in yield (in effect the capitalization rate) drive shifts in capital values. However,
with the growing attention on credit cycles, asset bubbles and the role of real assets as
collateral, movements of the yield away from long-run average values might indicate that prices
have moved above or below their fundamental economic values, presaging a correction. Given
that part of the case made for property lies in its supposed “inflation hedging” properties
(although evidence for this is mixed, particularly regarding unexpected inflation: see Hoesli et
al. 2007 for a review), we include the retail price index as a measure of UK inflation. Finally,
given that real estate investment is increasingly global and because changes in the exchange
rate reflect expectations regarding national economic performance, we examine the USD-GBP
exchange rate.

Descriptive statistics for these variable s are shown in Table 1 below.

Table 1: Descriptive Statistics

Variables Mean | Median | Max Min S.D. [Skewness| Kurtosis
I 2.15 2.53 8.03 -14.51 3.25 -1.98 10.67
LIBOR 7.20 6.04 15.25 2.83 3.18 1.20 3.44
Inflation 0.80 0.75 2.73 -0.57 0.63 0.85 4.22
Real interest 6.39 5.55 13.81 2.67 2.88 1.10 3.29
Initial yield 6.74 6.96 9.09 4.57 1.18 -0.06 2.16
Exchange rate 1.68 1.65 2.04 1.41 0.16 0.45 2.32
FT returns 2.02 3.53 18.84 | -32.00 8.59 -1.08 5.31
GDP 0.60 0.65 2.20 -1.80 0.57 -1.15 7.01
Employment 29,240 | 29,030 | 31,661 | 26,762 | 1,386 0.24 1.85




5. Estimation Results

5.1 AR and AR-TAR models.

First, we present the quarterly results of the TAR models and the base case AR model in Table
2. The estimated values for & and ¢ from the AR method are in line with the literature — the
smoothing parameter is greater than half, while the lagged coefficient is relatively small in size,
denoting small but non-zero autocorrelation in returns. For the TAR models, smoothing
parameters vary between 0.1 (employment) and 0.9 (exchange rate) depending on the regime
indicator. The smaller figure is the exception; most models show the expected high levels of
smoothing. The best performing TAR models, as measured by size of sum-of-squares errors, are
the FT returns, LIBOR and GDP models (employment has a relatively low SSE, but is not
analysed further given the insignificant smoothing parameter). In terms of SSE, the best
performing model is that defined by FT returns, with an SSE that is 42% lower than the base
case AR model.

Figure 1 shows quarterly time-series plots, between 1986Q4 and 2008Q4, of log-returns on IPD
total return index and the three best performing exogenous variables, LIBOR, log-returns on FT
index, and quarterly GDP growth. The threshold value of each regime indicator is shown by the
horizontal line. There have been two important crises in the UK real estate market, namely the
1990s crisis, and the recent financial crisis (2007-2009). A good regime indicator should thus be
able to pick these up. Figure 1 below illustrates this point. While LIBOR managed to capture
only the 1990s downturn, GDP growth captures the recent one too. However, GDP seems to
respond more slowly than the equity index — it takes some quarters before GDP switches to the
bad state. FT returns, on the other hand, seem to be a pretty good regime indicator. This
variable does not only capture the two important downturns in the real estate market, but also
other smaller downturns. FT returns also respond much faster than GDP does as the stock index
is regarded as a leading indicator.
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Table 2: Estimation Results for AR-TAR (Switching Return)

Model a " @ 72 @, c T [Min,Max] SSE
TAR
0.51** -1.25* 1.27** 2.38** 0.18 233.45
LIBOR 6.25 0.56 [2.83,15.25]
(0.07) (0.48) (0.10) (0.65) (0.11)
. 0.77** 0.25 -0.09 -0.22 0.95%* 259.44
Inflation rate 0.94 0.33 [-0.57,2.73]
(0.09) (1.67) (0.15) (1.08) (0.23)
. 0.72%* -0.98 0.98** 3.01** -0.17 242.68
Real interest 5.12 0.57 [2.67,13.81]
(0.14) (0.75) (0.12) (1.13) (0.09)
0.53** 2.22%* 0.31** -4.05%* 1.77** 179.91
FT returns -1.54 0.76 [-32.00,18.84]
(0.09) (0.32) (0.08) (0.94) (0.24)
0.93** -40.54 1.70 1.33 0.02 240.19
Exchange rate 1.95 0.05 [1.41,2.04]
(0.02) (235.98) (7.65) (2.20) (0.10)
L 0.92** 1.60 0.02 -17.40** 1.76** 255.33
Initial Yield 4.64 0.95 [4.57,9.09]
(0.04) (2.18) (0.10) (3.85) (0.32)
0.81** 1.72 0.11 5.18 4.27* 208.52
GDP Growth -0.41 0.94 [-1.80,2.20]
(0.12) (0.99) (0.08) (6.66) (1.86)
0.08 -8.52 -0.32 0.41 0.83** 208.20
Employment 31,414 0.06 [26684,31661]
(0.11) (8.05) (1.53) (0.37) (0.12)
AR 0.94** -1.35 0.12 309.53
(0.04) (2.82) (0.15)

Notes: i) the parameters (a,¢1,¢2,yl,}/z,c,7r) denote the smoothing coefficient, the ‘high state’ coefficient, the ‘low state’ coefficient, the ‘high
state’ intercept, the ‘low state’ intercept, the threshold value, and the probability of high state; ii) [Min,Max] refers to the minimum and
maximum values of the exogenous variables; (iii) Newey-West Heteroscedasticity and Autocorrelation consistent (HAC) standard deviations are
reported in parenthesis; (iv) * denotes significance at 5%, ** at 1%. To ensure sufficient observations, the search is restricted between 5 and

95" percentiles.
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In the LIBOR regime, the “high state” corresponds to interest rates in excess of 6.25%. In this
state returns are negative and ¢ is strongly positive, implying typically falling values. In the
lower interest rate regime, the intercept is significantly positive and the autoregressive term
insignificantly different from zero. This has a ready economic interpretation, with returns
adversely affected by high interest rates, with steady growth in more benign environments. The
smoothing term is, however, relatively low compared to other models including the base case
AR formulation. The GDP-based regime is somewhat harder to interpret: the only significant
coefficient other than the smoothing parameter is the ¢ value for the low state, which is
strongly positive and of large magnitude: since GDP is falling in the low state, this suggests
sharp falls in value. However, the model is only in the low state 5% of the time. For the FT
returns model, all coefficients are significant at the 0.01 level or beyond. When FT returns are
above the threshold value, the intercept is positive and the ¢ term relatively small; in the low
regime (when the equity market is falling), the intercept is strongly negative and ¢ is large,
implying sharp falls. The world is in the low market state 24% of the time.

One of the interesting features of this analysis is that in many cases the autoregressive
coefficient in one of the regimes is explosive, that is, it is bigger than one in absolute value.
However, in these cases, the steady-state variance appears to exist, since the condition for the
existence of an overall steady-steady variance can be satisfied even when there is no steady-
state variance in one of the regimes; that is, ¢l7+(1-x)¢#; <1 and 4’ >1 can occur
simultaneously.? It is worth asking what is happening to returns when the process is in the high

state; suppose that the process is in this regime for k consecutive periods, then, conditional on
the time and value at entry, say period t, the variance at time t+k will be

k-1
var(r,, | r,, and being in the high state for k consecutive periods) = o2 > ¢! . (16)
=0

2k
This can be seen to be exploding at the rate ¢ However, when we consider

k-1
var(r, |1) =7*c2> g7 + extra terms, (17)
j=0
we see that this explosive component is actually bounded by the condition that ensures the
existence of an overall steady-state variance above. Figure 2 and Table 3 show fits of the AR
and AR-TAR models and descriptive statistics for the FT-return based regime analyses.

8 The condition is due to Knight and Satchell (2009), which is a special case of the general conditions developed by
Quinn (1982), Nicholls and Quinn (1982), Feigin and Tweedie (1985), and Andel (1976).
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Figure 1: Regime Indicators from AR-TAR Model
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Figure 2: Fitted AR-TAR vs. AR
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Table 3: Descriptive Statistics

IPD Returns | AR-TAR AR
Mean 2.15 1.92 -1.15
Median 2.53 2.22 1.86
Maximum 8.03 12.59 89.19
Minimum -14.51 -25.36 | -177.01
Std. Dev. 3.25 4.81 34.11
Skewness -1.98 -2.79 -2.12
Kurtosis 10.67 16.44 13.16
Observations 88 87 87
14

5.2 The TAR-TAR Model

We restrict our analysis of the least restrictive version of our models, the TAR-TAR or co-
switching model to the exogenous variables that proved most successful in the AR-TAR (and
TAR-AR) models, FT returns and LIBOR. Table 4 presents results for four possible models: one
with both regimes defined by interest rates, one with both regimes defined by equity returns
and two models that mix FT returns and LIBOR as the determinants of the regimes. All four
models show lower sum of squares errors than the base case AR model, with the model where
both regimes are defined by FT returns (hereinafter FT-FT) exhibiting the lowest SSE, 41% below
the base case result. The next best performing model has smoothing regime defined by equity
returns but returns regime defined by LIBOR.

Examining, first, the FT-LIBOR model, smoothing appears to be more extreme in the low equity
return regime — which only occurs when FT returns are falling very rapidly (the threshold value
is -13%). For higher equity returns, smoothing, while still strongly significant, is below the level
of the base case AR model and, hence, conventional estimates. The low FT high smoothing
regime only occurs 8% of the time. The return regimes are determined by LIBOR; when interest
rates are below the 6% threshold, ¢ is not significantly different from zero, with returns largely
determined by the intercept, implying steady growth. In the higher interest rate environment,
which one might expect to be associated with weaker real estate returns, the intercept is
insignificant while the autoregressive term is significant at the 0.05 level. A combination of high
smoothing (falling FT values) and high interest rates (significant auto-regression) suggests
sharply falling returns in successive periods. However, this combination of regimes is rare,
occurring just 2% of the time.

The FT-FT model identifies more extreme regimes, with both threshold values indicating falling
equity values. The smoothing regime is defined by sharply falling FT prices: below the
threshold, the smoothing parameter is higher, at 0.96, than above. The return process regime
threshold is just negative at -1.2% (occurring 26% of the time). When equity returns are falling,
the real estate intercept is strongly negative and there is significant and explosive auto-
regression, suggesting sharply falling real estate returns. Above the threshold, the intercept is
positive and ¢ insignificant, suggesting steady growth. Just over half the time, the market is in
the steady growth, lower smoothing state; the stronger smoothing, falling return environment
is rare, occurring just 7% of the time, identifying extreme states in the market.
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Table 4: Estimation Results for TAR-TAR (Co-Switching)

Model @ 2] N # V2 4 G C, Ty Tin Thi Thh [Min,Max] SSE
TAR
1.42*%*  0.73** -0.37 0.79%* 3.05** -0.04
LIBOR-LIBOR 6.21 1131 055 0.00 0.33 0.12 [2.83,15.25] 250.27
(028) (0.07) (133) (0.14) (0.68) (0.15)
FT-FT 0.72** 0.96** 3.36** 0.01 -7.13%  1.40%*
-13.33 -1.20 0.07 0.00 0.19 0.74 [-32.00,18.84] 183.16
(0.07) (0.04) (0.70) (0.09) (2.61) (0.41)
1.40*%* 0.56** 1.63** 0.35%* 5.28** .0.85*%
LIBOR-FT 6.21 -1.79 0.15 040 0.09 0.36 as above 335.93
(024) (0.09) (0.61) (0.12) (L61) (0.42)
0.79** 2.22%* 024 0.59* 3.34**  -0.18
FT-LIBOR -13.34 595 0.02 0.06 041 051 as above 211.80
(0.10) (0.80) (1.49) (0.29) (L.03) (0.13)
AR 0.94** -1.35 0.12 309.53
(0.04) (2.82)  (0.15)

Notes: i) the parameters (tzl,a2 , ¢l,¢z,}/1, 72,(:1,02) denote the ‘high state’ smoothing coefficient, the ‘low state’ smoothing coefficient, the

‘high state’ coefficient, the ‘low state’ coefficient, the ‘high state’ intercept, the ‘low state’ intercept, the threshold value of the smoothing

equation, and the threshold value of the returns process; ii) the probabilities (7[,, 3 T s ”nn) denote the state probability of both the

smoothing equation and the returns process being in the low state, the probability of the smoothing equation being in the low state and the

returns process in the high state, the probability of the smoothing equation being in the high state and the returns process in the low state, and

the probability of both the smoothing equation and the returns process being in the high state; iii) [Min,Max] refers to the minimum and

maximum values of the exogenous variables; (iv) the Newey-West Heteroscedasticity and Autocorrelation consistent (HAC) standard deviations

are reported in parentheses; (v) * denotes significance at 5%, ** at 1%.
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Figure 3: TAR-TAR in FT Returns
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Note: the red line is the appraisal threshold, while the green line is the return threshold.

Figure 3 shows that once FT returns fall below -1.2%, then the return process shifts from the
normal regime — where real estate returns have a positive mean and exhibit little persistence —
to the bad or “crisis” regime — where returns have a negative mean and are highly explosive.
However, it is not until FT returns fall below -13.33% that appraiser smoothing behaviour shifts
regime. Figure 4 shows the fitted results. Panel A compares the index returns with the TAR-TAR
and AR results. The extreme returns generated by the AR model obscure the relationship
between the index returns and the TAR returns, which is shown more clearly in Panel B.
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Figure 4: Fitted TAR Returns versus AR and Reported Data
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Table 5 shows descriptive statistics for the original appraisal-based index and the returns from
the AR and TAR-TAR process. The AR process seems unsatisfactory, generating a negative
mean return as a result of the extreme negative values at the end of the period (the median is
positive) and with an infeasibly large standard deviation. The results from the TAR-TAR model
seem intuitively more sound, with the standard deviation 2.4 times higher than the appraisal-
based return and a reduction in the serial correlation. The final column of the table provides
descriptive statistics for a “conventional” style desmoothing model as per equation 2, with
alpha set equal to 0.8. The results are similar to the TAR-TAR model (the two series have a 0.92
correlation) but with a higher standard deviation. The conventional model suggests a fall of 60%
in capital values in the second half of 2008, compared to a 45% for the TAR-TAR model and a
reported fall of less than 20%.

Table 5 Descriptive Statistics ,Indexed, TAR-TAR and AR Models.
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IPD Returns | TAR-TAR AR a=0.8
Mean 2.15 1.25 -1.15 1.36
Median 2.53 2.22 1.86 2.62
Maximum 8.03 12.59 89.19 24.42
Minimum -14.51 -25.36 -177.01 -53.00
Std. Dev. 3.25 7.95 34.11 9.82
Skewness -1.98 -2.79 -2.47 -2.72
Kurtosis 10.67 12.66 13.16 13.73
Serial Correlation 0.813 0.199 0.098 0.222
Observations 88 87 87 87
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6. Conclusion

We have proposed a new unsmoothing technique for returns on an appraisal-based valuation
index. The regime-switching TAR methodology not only allows us to distinguish the ‘normal
regime’ variance from the unusual one, but also — and probably more importantly — fixes the
identification problem encountered in the conventional AR method. For regimes, we utilise
variables identified as significant in the determination of real estate returns. The most
promising results come from the use of FT equity returns, interest rates (measured by LIBOR)
and, to a lesser extent, by GDP. We examined models where the smoothing parameter was
constant but the underlying return process varied by regime (AR-TAR), where the smoothing
parameter changed but the returns process was time invariant (TAR-AR) and the least
restrictive set of models where both smoothing parameter and returns process switched (TAR-
TAR). The best models outperformed the base case single smoothing parameter AR process.

Of the TAR-TAR models, the best performing had both smoothing and returns process regimes
determined by FT returns. When equity markets were falling, underlying real estate returns
appear to behave differently than when they are rising: the intercept term is strongly negative
and the autoregressive parameter exceeds one, implying sharply falling prices. Further, when
equity prices are falling particularly sharply, smoothing increases: given that the model suggests
that real estate returns are likely to be negative in this market environment, this may well be an
information effect as transaction volumes fall’. This high smoothing, explosive regime is,
perhaps fortunately, short-lived. It does point, though, to possible tail dependence between
real estate and equity returns distributions, providing an interesting link to the emerging
literature on tail dependence in asset markets. This has important implications for mixed-asset
portfolio diversification strategies.

° There are a number of possible interpretations of this finding. One is that valuers “over-react” to falling prices,
marking next period prices down further than is required; another is that observed transaction prices understate
the true fall in values since owners do not bring properties to market, reducing transaction activity and masking
falls.
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Appendices
Appendix A: Variance Manipulation in a Generalised Smoothing Equation

The idea of ‘variance manipulation’ is applicable to the extended smoothing equation, which
depends on further lagged values of the observed returns:

n
L= (18)
j=1

n
where Zaj +a,,, =1. As a result, the unsmoothed returns and their volatility will be given
=L

respectively by

1 (e
r.=n(r. —Za,-nj], (19)
1->a, =

j=1
and
N2
var(r) =(@'i) " @Qw, (20)
where an (n+1) vector w:(l,—al,...,—an)', an (n+1) vector i:(l,l,...,l)’ and Q an
(n+1)x(n+1) autocovariance matrix of r" whose element-ij is cov(r’,,, 1" ,,) . Given

knowledge of Q, the weights @ can be calibrated such that the desirable level of var(r,) is
achieved.
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Appendix B. Variance of TAR processes

We consider the following TAR model — written by using an indicator I, —

You =il + (A= 1) +[ B, + B,(L=1)]Y, +[ay], + o, (1= 1) ]V, (21)

where we seek a representation for the variance in terms of more fundamental parameters. It
is assumed that the process v,,, ~iid(0,1).

The regime indicator depends upon some variable z, and we assume that

| 1ifz,>c,
‘T oifz <c.

(22)

Without loss of generality, the threshold value ¢ is assumed to be zero. The variable z, can be
a range of variables, known at time t; i.e., z, €. It could be independent of the process {v,},

or it could be the process {y,}. The two cases that we consider are discussed next. We assume

that the process (y,, z, )’ is (jointly) weakly stationary, and that the first two moments exist.

To cover all such possibilities, we define the following parameters: Ci=cov(yf,ll);

7 = prob(l, =1) . The mean and variance will be denoted by # and o respectively.

Taking unconditional expectations of Error! Reference source not found., we see that
y=a2+(a1—az)ﬂ'+ﬁ2y+(ﬁ1—ﬂz)(C1+;m'). (23)

Rearranging Error! Reference source not found., we see that

_ o, +(a—a,)m+(B, - B,)C
1-(7p,+1-m)B,)

(24)

This expresses the mean in terms of the state probabilities, the parameters of the dynamic

process, and the covariance between the state and the regime variables. Equation

Error! Reference source not found. shows that a TAR process could generate a non-trivial

mean due to the presence of C, even if a, =a, =0, a contrast to a simple AR(1) without drift
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model. In the special but important case of C' =0, which results from the standard exogeneity
assumption, we see that

_ o+ (1-7)a, (25)
Y mranB,)

Equation Error! Reference source not found. is very satisfactory, since it depends only on the
steady-state probability of z (a marginal concept) and the fundamental parameters of
Error! Reference source not found.. Equation Error! Reference source not found. is less so as
the covariance term could be constructed as containing information about the y distribution,

that is, it could be thought of as endogenous rather than exogenous.
We shall now repeat our analysis for the variance of y . By the Law of Iterated Expectation,

o® = E[var(y,,, | w)]+var(E[y,., | w]) (26)

where w, =(Y,, 1,)’. The expression in Error! Reference source not found. is simply a result of

the Law of Iterated Expectation.

Var(y1+1|wt):(0_1|t +O_z(]-fl‘)f- (27)

Hence,
E[Var(YtA | W[)] = 7[012 + (1_7[)0_22 . (28)
E[yt+1 |\Nt] =a, +(0!1 _az)lt +ﬂ2y[ +(,B1 _ﬂz)ltyt . (29)

Hence,

var(E[yHl | W;]) = (al _az)zn(l_”) +:B220_2 +(ﬂ1 _ﬁz)z var(ltyt)
+2(a, —a,) pycov(ly, y,) + 2(e, — a,))(B, - B,) cov(l, 1Ly,) (30)
+28,(B,— B)cov(y,, 11 Y,).

The covariances can be written in terms of the fundamental parameters as
cov(l,,y,)=C};
cov(l, 1,y,) = (C'+m)1-7);
cov(y,, 1,Y,) =C*+ (0% + 1*) 7 — (C' + mu) p; and var(l,y,) = C* + (o + u*)r — (C* + mu)°.
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Substituting Error! Reference source not found. and Error! Reference source not found. into
Error! Reference source not found., we get

T e e e e
*2[(a ) (B~ B)al-7)|

+H(B-BY 21-7) |’ -
—2[(B~ ) (7, + - 2),) | uC*

+2[ (e, — ;) ((1-7) B+ 7,) | C*

~(B- B (CY) +(BE - B2)CY.

Together with Error! Reference source not found., equation
Error! Reference source not found. gives the variance of the variable y in terms of the
fundamental parameters. Unlike the mean, the variance also depends on the “second moment”
C?; assuming uncorrelatedness does not ensure that this term vanishes.

Consider the case of exogeneity (or the stronger case of independence) which implies
Cc'=Cc?*=0.

o’ = 1—(72'ﬂ12+—1(1—7r)ﬁ22){”o-12 +1-7)ol +(a,— )’ 71— 7)
Jr2[(0‘1 -a,)(B 7ﬁ2)7[(177[)]/4
+[(B- ) w(l-7) |1} (32)
1
(7B +1-7) )

{ro? +(1-7)ol +

2
+7[(1_7[)[(a1_az)+(ﬁ1_ﬂz)/l] iz
where x4 is now given by Error! Reference source not found.. Equation
Error! Reference source not found. shows that the unconditional variance consists of two

terms: (i) a weighted average of the variance in each regime; and (ii) the unambiguously non-

2
Oy

negative constant. When 7 =1 (or 0), o becomes the single-regime AR variance (or

2
1

27



Appendix C: TAR-AR (Switching Smoothing) Results

Model o a, 4 ¢ c n [Min,Max] SSE
TAR
1.22** 0.75** 3.69 -0.04 272.24
LIBOR 12.30 0.10 [2.83,15.25]
(0.10) (0.20) (2.71) (0.20)
) 0.79*%* 1.33** 221  -0.09 269.40
Inflation rate 0.87 0.43 [-0.57,2.73]
(0.14) (0.11) (1.97) (0.18)
X 1.21** 0.75** 4.07 -0.05 272.31
Real interest 5.35 0.53 [2.67,13.81]
(0.09) (0.21) (2.97) (0.21)
0.21** 1.97** 1.17 0.60** 195.51
FT returns -1.54 0.76 [-32.00,18.84]
(0.08) (0.25) (0.67) (0.16)
Exchange 2.62 -0.03 -0.24 1.02** 255.38
1.96 0.05 [1.41,2.04]
rate (1.41) (0.14) (1.54) (0.34)
Initial Yield Not converged
0.82** 1.86** 1.78 0.08 246.65
GDP Growth -0.59 0.95 [-1.80,2.20]
(0.12) (0.45) (2.90) (0.12)
Employment Not converged
AR 0.94** -1.35 0.12 309.53
(0.04) (2.82) (0.15)

Notes: i) the parameters (al,a2,¢,;/,c,7r) denote the ‘high state’ smoothing coefficient, the ‘low
state’ smoothing coefficient, the coefficient for lagged unsmoothed returns, the intercept term in the
returns equation, the threshold value, and the probability of high state; ii) [Min,Max] refers to the
minimum and maximum values of the exogenous variables; (iii) Newey-West Heteroscedasticity and
Autocorrelation consistent (HAC) standard deviations are reported in parenthesis; (iv) * denotes
significance at 5%, ** at 1%. To ensure sufficient observations, the search is restricted between
5t and 95t percentiles.

28

Appendix D: Identifiability

A further look at the results reveals, moreover, that the supposedly sensible parameters may
be obtained by permuting (a,¢1,¢2). For quarterly LIBOR, for instance, a permuted set of
parameters (0.94, 0.49, 0.10) seems to be more in line with the conventional belief than the
original estimates (0.10, 0.49, 0.94). The former suggests smoothing, with less persistent “true”
returns, while the latter suggests the opposite. Whilst the two lagged coefficients and the
smoothing coefficient appear to be present somewhere among the three TAR-parameters, they
are not where we would expect them to be conventionally. Therefore, we need to reexamine
how we identify these parameters in the base model, and led us to question the identification
of the base model itself.

Once estimation of the relevant parameters is concerned, identification becomes a critical
matter. However, this is unfortunately left unexplored in the literature.

D.1 The Identification Problem in the Base Model

Identification of the base model parameters has been taken as granted, and the conventional
recursive estimation procedure assumed valid. However, careful consideration actually reveals

that the parameters (a,¢,af_) are not separately identifiable in the sense that we can infer

specific values from our least-squares problem, i.e. in the sense of knowing which number is
and which is ¢ in the AR(1) smoothing model described by Equations (1) and (5).

We will illustrate this by looking at the likelihood function implied by the implied AR(2) process
as in Equation (6). If the residuals in the AR(1) process are normally distributed, i.e.
£ N(0,07), assuming that the first two observations are fixed and known, then the
likelihood will be given by

T-2

;
logL(r';a,¢,0°) = leog 2z(1-a) o? 7ﬁz(r‘* —(a+g)r, +a¢r§2)2, (33)
-a) o, =3

where the parameters in the arguments of the functions denote respectively the smoothing
coefficient, the AR(1) coefficient, and the residual variance.

Now let us consider another model structure
K=grL+0-ar, (34)

r=ar,+u, U 0iid(0,s7). (35)
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where the variance of the new residual U, is assumed to be as in the equation below.

of = [1_—0{] 652. (36)
1-¢

Under normality, the likelihood of this structure will be given by

log L(r*; ¢, &, 07) :—%Iog 27(1-¢) o? —mg(rj —(a+¢)qil+a¢qt2)2 (37)

By substituting for the value for cruz, we found that

2
. . 1-
logL(r;a,¢,07) =log L(r :&a{ﬁ} a?). (38)
Therefore, this new structure and the original one are observationally equivalent.

In practice, we usually suppose a high level of smoothing (e.g. from Table 1 @ =0.92), but a low
level of returns persistence (¢ =0.13). Such supposition is not totally correct unless we have
some additional prior information, for example, requiring that the smoothing coefficient should
be greater than a half.® The identification analysis above shows that this might as well result
from the contrary — the smoothing level is low, but the persistence level is high. We illustrate
this point by calculating the sum squared errors (SSE) of the implied AR(2) equations using the
permutated parameters from Table 2; the results are reported in Table D1. We see both the
original set of parameters estimated by the recursive least squares (a,¢) =(0.92, 0.13) and the

permuted set (0.13, 0.92) give the same SSE of 309.83. This implies that both could possibly be
an equally good representation of the smoothing model.

On the other hand, our TAR technique does not seem to suffer from an identification problem.
For example, using LIBOR as a regime indicator, we obtain an SSE of 305.15 for the estimated
set (a,¢,4,)= (0.10, 0.49, 0.94), 307.10 for (0.94, 0.49, 0.10) and 342 for (0.94, 0.10, 0.49);

the last two combinations swap the smoothing and the autoregressive coefficients, and seem
to be more in line with the conventional wisdom, while the first one gives the best fit to the
data.’’ This finding supports the claim that the conventional belief could be faulty.

® Another example is to require the smoothing coefficient to be strictly positive, i.e. ruling out the case of anti-
unsmoothing. Then the AR parameters are separately identifiable if one takes on a negative value.
™1t is also clear from this LIBOR exercise that swapping the two autoregressive coefficients of the two regimes
only increases SSE. We thus omit the results for the other regime indicators.
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Nevertheless, the TAR method still seems to suffer from an estimation problem, due to its non-
linearity. Clear, the estimated coefficients obtained from the recursive procedure do not always
achieve the minimum SSE.*? For example, for TAR with FT returns, the estimated parameters
(0.25, 0.83, 1.69) gives higher SSE than (0.83, 0.25, 1.69) which actually seems more consistent
with the conventional belief. In conclusion, although the implementation needs to be
perfected, TAR does help with identification, and we elaborate this point in the next section.

Table D1: Identification Analysis

Quarterly a A #, SSE

AR 092 013 309.83*
013 092 ' 309.83*

TAR

LIBOR 010 049 0094 305.15*
010 094 049 495
049 010  0.94 337
049 094 010 492
094 049 010 307.10
094 010  0.49 342

Inflation rate 013  -028 093 309.78*
028 013 093 345
093  -028 013 309.97

Real interest 009 093 126 309.09*
093 009 126 310.31
126 0.93 0.09 582.96

FT RET 025 083 169 27875
0.83 025 169 258.52*
169  0.83 0.25 788

Exchange rate 001 858 094 249.50*
858 001 094 15,381
094 858 001 557

Initial Yield 009 096 078 306.42
096 009 078 292.30*

2 \We could reasonably expect the sum squared function to possess many relative minima, and hence the recursive
least squared method might not be able to select the global minimum, even though it still achieves convergence.
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078 096  0.09 42337
GDP Growth 012 088 275 © 323.09
088 012 275 311.91*

275 012 088 3,242

Employment 092 005 015 309.61*
005 092 015 92883

015 005  0.92 327.08

Notes: i) the first sets of parameters are those obtained from the recursive estimation; ii) the others are
combinatorial; iii) the sum of squared errors (SSE) are computed from the residuals V, of regressions (6)

for AR method, and (15) for TAR; (iv) the minima are marked by *.

D.2 Identifiability in Unsmoothing with TAR

The exogenous regime indicator helps identify the autoregressive coefficients of the two
regimes, and hence the smoothing coefficient. By the same line of analysis, under normality the
likelihood function for Equation (15) is given by

. T-2

log L(r ;a,¢1,¢2,af)=—7|0g 2z(1-a) o?
1 T , (39)

*7222('} 7(0{ +(¢1|H +é, (1* IH))) fa+t a(¢1|t—1 +4, (1* IH)) rtfz) .

2(1—0{) o, =3

The additional exogenous information pins down the regime-wise autoregressive parameters,
i.e. swapping (¢,4,) will result in a different likelihood. A trivial condition that ensures
identifiability is that the steady-state probability 7 >0. It is also clear from the above
expression that swapping the smoothing coefficient « with one of the autoregressive
coefficient will change the likelihood, as the second term will change, in spite of the residual
variance being scaled as shown in the previous section. This explains why the SSEs of the TAR
models in Table 3 always vary with the combinations.

D.3 Alternative Solutions to the Identification Problem

We have seen that allowing the true returns to follow a different process help with
identification. Nevertheless, the simplest way to facilitate identifiability is probably to impose
some restrictions on the values of some of the parameters, e.g. the residual variance. For

example, in the AR technique, one could simply set af_ =1, then the other two parameters

(a,4) will become separately identifiable.
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An alternative, and plausibly better, approach to this is to re-specify the measurement
equation. We add a noise term 7, 0iid(0,1) to the right hand side of Equation (1); this

represents measurement errors in the valuation. The specification is similar in spirit to Geltner
(1991), although in the previous work the author assumes that the noise term is diversified
away at the aggregate-level data. The new measurement and the state equations imply a
regression

(1-al)(1-¢L)r =v, +(1-¢L)n, (23)
where V, = (1-a)¢,. This is an ARMA(2,1) process in r".
The MA part can be equivalently described by an MA(1) process
Vi+(1-gL)n U & +6& . (24)
The new parameters match the primitive parameters according to the following relationships.
(1+6%)02 =(1-a) o? +(1-¢°), (25)
S0t =—¢. (26)

The parameter & will be determined by the triplet (a,¢, o-f), and is never equal to either a or

¢ . That rules out the possibility of common factors, and hence the equation is identifiable.
Moreover, this specification is superior to the first suggestion in a sense that it still allows us to

identify the value for o-f which is of economic significance.

D.4 Practical Solutions to the Identification Problem

Instead of assuming that the returns are demeaned — thus suppressing the intercept term that
should have been in (5) — we could reintroduce the intercept term into the true returns process.

L=y+dr,+e, (40)

where y is the intercept which has been so far assumed nil. As it turned out, doing so solves
the identification problem, and improves the goodness of fit (though only marginally)
altogether. The new estimation results are shown in Table 4, and the identification analysis in
Table D2.
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In Table B2, we see that our TAR approach suffered in estimation. The LS estimates could not
always reach to the absolute maximum, and that the permuted set of estimates yielded lower
SSE. This might be a symptom of model misspecification in which we assumed that the
intercept values do not differ across regimes, and are equal to zero. We therefore include the
intercept terms into the TAR, which results in

n={71+¢1'}71+‘911 74 >GC (41)
V. +ra+e, 7, SC
The results in Tables 4 and 5 confirm that this is a better model.
Table D2: Estimation Results for Models with Intercepts
Model a " & ¥, &, c Vid [Min,Max] SSE

TAR

LIBOR 0.11 -0.20 094 -042 131 4.57 0.85 [2.83,15.25] 302.35
023 -093 121 1.05 0.64 6.06 051 [2.83,1525] 257.50

Inflation
rate 0.12 -0.14 0.74 -0.10 0.95 266 0.02 [-0.57,2.73] 309.33
Realinterest 0.12 -0.11 094 138 0.70 3.00 098 [2.67,13.81] 308.23
FTreturns 0.55 245 029 -422 164 -048 0.70 [-32.00,18.84] 183.63
Exchange -40.54 1.33 240.19

0.93 1.70 0.02 2.00 0.02 [1.41,2.04]

rate
Initial Yield -0.01 054 0.81 -1.01 107 6.06 0.66 [4.57,9.09] 285.60
GDP Growth 0.11 038 081 7.45 449 -040 0.97 [-1.80,2.20] 208.52

Employment 0.25 -646 0.10 0.64 0.76 31,461 0.07 [26684,31661] 220.37

AR 0.94 -135 0.19 309.53

Notes: i) the parameters (a,¢l,¢2,71,7/2,c,72') denote the smoothing coefficient, the ‘high state’
coefficient, the ‘low state’ coefficient, the ‘high state’ intercept, the ‘low state’ intercept, the threshold
value, and the probability of high state; ii) [Min,Max] refers to the minimum and maximum values of the
exogenous variables.

Apart from the LIBOR case whose parameter values do not converge, the results in Table D2 are
more reliable that those in Table 2 in terms of goodness of fit. Nevertheless, the estimates do
not change vastly in value. The TAR on FT returns achieves the best fit. The identification
analysis in Table B3 shows no problem of “relative minimum” which were previously achieved
by the estimated coefficients.
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The introduction of the intercepts also helps with the economic interpretation as well. For
instance, consider the TAR on FT. Now it is clear that in the ‘high state’ (FT returns > -0.48%),
the unsmoothed real estate returns exhibit a positive mean (y,>0), and show small

persistence (¢ =0.29); on the other hand, in the ‘low state’, the unsmoothed real estate

returns are explosive, with a negative mean returns. The estimated smoothing coefficient is
now 0.55 with is noticeably larger than what we had before.

Table D3: Identification Analysis for Models with Intercepts

Quarterly a 7 & A @, SSE

AR 094  -135  0.19 309.53*
019  -135 094 41721

TAR

LIBOR 023 093 121 105  0.64 257.50*

T o064 093 121 1.05 0.23 258.03

Inflation rate 012 -0.14 074 010 095 309.33*
074 -014 012 010 095 390.42
095 -0.14 074 -0.10 0.2 314.32

Real interest 012 -011 094 138  0.70 308.23*
094 011 012 138  0.70 309.70
070  -011 094 138 012 381/80

"FTRET 055 2.45 029 422 164 183.63*
029 245 055  -422  1.64 240.80

Notes: i) the first sets of parameters are those obtained from the recursive estimation; ii) the others are
combinatorial; (i) the minima are marked by *.
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Appendix E Misspecification Analysis

Suppose that the true DGP is TAR(1) as in Equation (11). We retain all the assumptions,
including the exogeneity of z,. Now consider an OLS estimator of ¢, ignoring the existence of

regimes.

4= %r‘rrgl : (42)

By the Weak Law of Large Numbers of stationary mixing sequences (see McCabe and
Tremayne, 1993), it follows that

o P E[rtrt—l]
>——"==14+(1-7)¢,, 43
P ey (1-7)¢ (43)
since E[nr_]=74E[’]+(1-7)4,E[r?,]. Equation (43) is very intuitive — when the regime
indicator is exogenous — the single regime coefficient is simply a weighted average of the
coefficients for the two regimes. It follows that

Est. var(rt)gg—fz2 . (44)
1-(n4+(1-7)4,)

The misspecified implied variance cannot be larger than the variance of the TAR process in (14)

since 7 +(1-7) ¢ > (4 +(1—7r)¢52)2 . This is because

wf? +(1-7) (2 +(1-7)¢,) =2(1-7)(4~4,) 20 (45)

Therefore, in large samples, the variance calculated by assuming an AR(1) process will be
consistently underestimating the true variance. Equation (45) also shows that the discrepancy
depends on both the level of the steady-state probability, and the distance between the
regime-wise coefficients. The discrepancy is maximised at 7 =0.5 ceteris paribus.
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