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1 Introduction

Real estate market is a market with heterogeneous agents trading heterogeneous and

illiquid goods. Both buyers and sellers need time to search their deals. From sellers’

point of view, it’s ideal to sell at a as high as possible price and within a as short as

possible time period. In reality sellers face a trade-off between the sale price and time.

Time required to sell a property, the so-called time on market (TOM), can be painfully

long for some sellers. These sellers have an incentive to sacrifice some return to shorten

the TOM. For some other sellers, waiting with uncertainty is not necessarily a painful

experience. Patience is a must for high price seekers after all.

A pertinent research question is to determine whether there exists an optimal

selling mechanism for all sellers (and all buyers). Adams, Kluger, and Wyatt (1992)

compare a “slow Dutch auction” (the seller dynamically decreases his asking prices)

and a fixed reserve price strategy. They find that the “slow Dutch auction” is never

optimal because its present value of expected profit always shows a positive discount

to its counterpart’s. Mayer (1995) compares a no reserve, English-style auction to a

search sale and also shows positive auction discounts. His model predicts that auction

discounts are larger in down market with high vacancies, and in less dense markets.

Quan (2002) presents an opposite finding. He shows that prices obtained in auctions

are higher than prices obtained in the search market.

There are two common features of these previous studies. First, their models all

assume the seller is risk neutral and his aim is to maximize expected revenue. This is

consistent with the mainstream of the auction literature in which maximizing expected

revenue is the default assumption. However, in real estate market, agents (at least

most agents) are not risk neutral. Sellers with different levels of risk aversion may

prefer different selling mechanisms. The notion of “optimal mechanism” depends on

individuals’ preferences. Specifically, if sellers choose to put their houses on auctions,

they can largely avoid the TOM uncertainty although there is probability that they

may not be able to sell their houses during auctions. These sellers accept lower sale

price because their TOM uncertainty is also lower. Second, their models are all based
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on search models and they then augment search models to accommodate auctions. In

their search models sellers cannot recall previous offers.

In this article, I use a “selling with recall” sequential search model to analyze the

difference between auctions and search selling mechanisms. Cheng, Lin and Liu (2008)

use a similar model to analyze risk premium puzzle in real estate market. In the selling

with recall model the seller can recall all or part of previous offers and select among the

offers received. The selling with recall model is realistic because earlier buyers may not

be able to find a good substitute for the current on-sale property and the seller may

not be able to receive any offer above his reserve price. Cheng et al. (2008) analyze a

selling mechanism in which the seller waits for an optimal number of buyers. To further

justify this selling mechanism, they argue that “Therefore, a rational seller will try to

plan for an optimal marketing period. During the planned marketing period he can

only expect to receive a finite (and optimal) number of [buyers].” (page 821). There is,

however, an important difference between the stopping rule of choosing an optimal time

on market (hereafter, SRTM) and the stopping rule of choosing an optimal number of

buyers (hereafter, SRNB). If the seller’s stopping rule is the SRTM, ex-ante TOM and

ex-post TOM are the same and during the planned TOM he receives a random number

of buyers. If the seller’s stopping rule is the SRNB, when the optimal buyer arrives the

TOM is random.

The SRTM has a duality of search and auction characteristics. On the one hand,

the SRTM is a valid search stopping rule (supported by the Cheng et al.’s argument

quoted above). Glower, Haurin and Hendershott (1998) find that if sellers plan to move

or their jobs have changed, the marketing time of their properties are short. These

sellers may have a clear sale deadline but don’t necessarily put their properties on

auctions. On the other hand, the SRTM can be treated as a private valuation, no

reserve, first-price sealed-bid auction in which all remaining buyers send in their offers

in sealed envelopes and the seller chooses the highest offered price 1. In later sections,

1The SRTM can also be modified to represent an English auction by assuming the seller chooses the
second highest price. It’s hard to work out closed-form formulas for an English auction in my model.
The simulation algorithm for numerical analysis is provided in Section 4.
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I do not distinguish between auctions and the SRTM unless necessary.

My main findings are summarized as follows. First, more risk averse sellers choose

the SRTM or auctions while less risk averse sellers choose the SRNB. Both the mean-

variance analysis and downside risk analysis show that a unique and universal optimal

selling mechanism does not exist. Second, there exists positive auction discounts when

two equivalent strategies of the SRTM and the SRNB are compared. Third, auction dis-

counts decrease when market is hot, marketing campaign is efficient, and when buyers’

heterogeneity decreases. Auction discounts are compensated by positive risk reductions

when TOM is longer than a cut-off time. The cut-off time is shorter when the holding

cost is higher. Fourth, when sellers can only choose a fixed TOM, more risk averse

sellers with low holding cost choose to wait longer and obtain higher sale price.

I present the details of the model in Section 2. Then, in Section 3, I use the

classic mean-variance analysis to analyze and compare alternative selling mechanisms’

performance. In Section 4, I analyze and compare downside risks of alternative selling

mechanisms. Finally, Section 5 concludes.

2 The Model

The selling with recall model described below is similar to that in Cheng et al.’s (2008).

Assume the bid price X is a continuous random variable which has its probability

density function f(x) and its cumulative distribution function F (x) on a positive and

finite support [A, B]. The distribution of X is known by the seller and is not time depen-

dent. The n independent and identically distributed (i.i.d.) bids are {X1, X2, ..., Xn}.
The buyers’ arrival follows an exogenous and homogeneous Poisson process with the

rate λ. Adams et al. (1992) and Lin and Vandell (2007) use the same arrival process

in their models. There are several well-known properties of a homogeneous Poisson

process (see, e.g. Kao 1997). First, the inter-arrival times ti between the i− 1th buyer

and the ith buyer are i.i.d. exponential random variables with the mean 1/λ. Second,

the arrival time t of the nth buyer follows a gamma distribution with parameters n and
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λ. That is, the probability density function of t is given by

gn(t) = λe−λt (λt)n−1

(n − 1)!
, t ≥ 0 (1)

The mean and variance of gn(t) are n/λ and n/λ2 respectively. For the SRNB,

when the seller chooses an optimal N∗, the expect waiting time (holding cost) and its

variance are N∗/λ (cN∗/λ) and N∗/λ2 (c2N∗/λ2) respectively.

Third, the number of buyers in [0, t] is Poisson distributed with the mean λt. That

is, for t ≥ 0

Pr(N(t) = n) = e−λt (λt)n

n!
(2)

Important assumptions of the model are that the bid price distribution F is inde-

pendent of the bid arrival process governed by parameter λ and both are independent

of time. The seller has a constant holding cost per unit of time c. The same treatment

of holding cost has been used in many previous studies (See, e.g. Haurin 1988, Sirmans,

Turnbull and Dombrow 1995, Quan 2002). The holding cost c here is an opportunity

cost which may be high for the seller. See Section 3.4 for detailed discussion.

The seller chooses the highest price among available offers. The highest price of

n offers is Yn = max{X1, X2, ..., Xn}, n ≥ 1. Let Fn(.) be the cumulative distribution

function of Yn. It’s well known in the order statistics literature (e.g. Johnson et al.

1994, page 6-7) that the cumulative distribution function of the highest price is

Fn(y) = F (y)n. (3)

The probability density function fn(.) can be obtained by differentiating Fn(.),

fn(y) = nF (y)n−1f(y). (4)

Table 1 lists the cumulative distribution functions, probability density functions,

means and variances of X and Yn when X follows a uniform distribution U(A, B).

When bid price distribution is uniform, the mean price of all bids is μb = (A + B)/2
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and its standard deviation is σb = (B − A)/2
√

3. . The mean price μb measures the

market consensus of the property value. The standard deviation σb measures the price

dispersion which represents buyers’ heterogeneity.

(Insert Table 1 here)

For the seller who chooses the SRTM, the total benefit of waiting a fixed time

period T is

K(T ) = YN(T ) − cT, (5)

For the seller who chooses the SRNB, the total benefit of waiting for N buyers is

K(N) = YN − cT (N), (6)

The seller’s utility function is U(K) and his aims to maximize his expected utility.

The seller’s utility function satisfies U ′ > 0 and U ′′ < 0 (i.e. the seller is risk averse). For

the SRTM, each stopping time represents a possible stopping strategy and the seller’s

decision parameter is T ∗ that solves the following optimization problem:

max
T∈(0,+∞)

E(U(K(T ))) (7)

For the SRNB, each number of buyers represents a possible stopping strategy and

the seller’s decision parameter is N∗ that solves:

max
N∈{1,2,...,+∞}

E(U(K(N))) (8)

In some countries (e.g. United States and Singapore) auctions are mainly as-

sociated with distress properties. Financially distressed sellers normally have a well

specified liquidation date or a limited upper bound of liquidation date. Infinite or even

long waiting is not feasible. To analyze the liquidation risk, the selling mechanism has

to allow the seller to specify a fixed TOM. A natural way of analyzing the liquidation

risk is to treat the liquidation constraint as a pertinent time constraint on the seller’s
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expected utility optimization problem when the seller chooses the SRTM. When the

liquidation deadline is TL, the seller’s optimization problem is:

max
T∈(0,TL)

E(U(K(T ))) (9)

One special situation is when the seller’s unconstrained optimal stopping time T ∗ is

shorter than his liquidation deadline TL. In this situation, Eqs. (7) and (9) are equiv-

alent and the seller’s optimal stopping time and maximum expected utility do not

change.

During the selling process if no earlier bidder drops his offer, this is the perfect

recall situation. When recall is perfect and the optimal number of buyers N∗ for the

SRNB is determined, the expected TOM is E(TOMN∗) = N∗
λ

but the TOM is a random

variable and can go to infinity. When the optimal TOM T ∗ for the SRTM is determined,

the expected number of buyers is E(NT ∗) = λ×T ∗ but the number of buyers is a random

variable. Perfect recall is possible if the TOM is short or the seller is a monopolist. For

the SRTM, a short TOM can be chosen so that no buyer drops. When the planned

TOM is long, some of the previous buyers may be able to find other appropriate houses.

For the SRNB, there is no guarantee of getting perfect recall because the TOM is a

random variable.

When some of the earlier buyers drop out and cannot be recalled, this is the partial

recall situation. In my model, the mathematical treatment of partial recall is similar to

that of Cheng et al.(2008). I assume θ (0 ≤ θ ≤ 1) is the probability of an earlier buyer

to stay. Thus (1 − θ) is the probability of a buyer to exit. When θ = 1, the perfect

recall situation recovers. θ is the same across all buyers thus θ is also the percentage of

all buyers who are still available for recall.

Suppose the seller chooses the SRNB and waits for N∗ buyers, on average the

remaining number of buyers is θN∗. The holding cost of the seller is determined by

N∗ but the sale price is determined by θN∗. Suppose the seller chooses the SRTM and

waits a fixed time T ∗, on average the remaining number of buyers is θλT ∗. λ represents
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a demand-side factor. The higher the demand, the higher the λ. θ represents a supply-

side factor. A higher θ implies fewer buyers find substitutes so the market supply of

similar houses is smaller. The product θλ is the effective arrival rate and represents the

offsetting effect of the demand-supply relationship. When demand and supply are both

strong (i.e. high λ and low θ) the seller benefits from the strong demand but suffers

from the strong supply. The effective arrival rate also captures the marketing campaign

efficiency. An efficient marketing campaign increases the comparative attractiveness of

the house and thus increases the effective arrival rate.

Under close scrutiny, θ should also be a function of the TOM. Given longer search-

ing time, buyers’ probability of finding substitutes increases. Thus the retention rate θ

is not only impacted by the market supply (i.e. an exogenous factor), it’s also impacted

by the seller’s decision (i.e. an endogenous factor). To keep the mathematical analysis

tractable, I assume θ is independent of the TOM 2.

3 Mean-Variance Analysis

Markowitz’s (1952, 1959) mean-variance analysis lay the foundation of modern portfolio

theory. His works explain how risk averse investors make investment choices in a world

with uncertainty. In this section, I borrow the classic mean-variance analysis from

Markowitz and use it in analyzing selling mechanism choices in real estate market.

2Another modeling possibility is to assume that the event of i remaining buyers out of a total N
buyers follows a binomial distribution CN

i θi(1 − θ)N−i. For the SRNB, N = N∗; for the SRTM, N
takes all possible values of arrival numbers. I have conducted a numerical study on this assumption.
Numerical study shows that when N∗ (T ∗) is large, treating θN as an effective remaining number
of buyers for the SRNB (or treating θλ as an effective arrival rate for the SRTM) provides a good
approximation to their binomial distribution counterparts. However, when N∗ (T ∗) is small, the
simplified treatments tend to underestimate (overestimate) the variance of sale price for the SRNB
(SRTM). Technical details can be obtained from the author upon request. More realistic model may
involve advanced stochastic processes (e.g. a birth and death process) to model both the stochastic
arrival and the stochastic exit of buyers. It’s hard to obtain closed-form formulas in these models
however. Computer simulations or numerical methods are the major tools for analyzing the results.
In this article, I focus on the simplified mathematical treatments.
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3.1 Mean and Variance of Total Benefit

When recall is perfect, based on Eq. (6) and results in Table 1 the mean of K(N) is

E(K(N)) = E(YN) − cE(T (N)) =
NB + A

N + 1
− cN

λ
(10)

The variance of K(N) is

V ar(K(N)) = V ar(YN) + c2V ar(T (N)) =
N(B − A)2

(N + 1)2(N + 2)
+

c2N

λ2
(11)

There is no covariance term in Eq. (11) because YN (only depends on bid price

distribution) and T (N) (only depends on arrival process) are independent when N is

given. For the SRNB, the TOM is a random variable so the holding cost is also a random

variable. The variance of the holding cost contributes to the total benefit variance and

cannot be ignored by the seller in his decision making.

When recall is partial, the sale price is determined by the effective number of

buyers θN while the holding cost is still determined by the total arrival number N .

The mean and variance of the total return K(N, θ) are:

E(K(N, θ)) = E(YθN) − cE(T (N)) =
θNB + A

θN + 1
− cN

λ
(12)

and

V ar(K(N, θ)) = V ar(YθN) + c2V ar(T (N)) =
θN(B − A)2

(θN + 1)2(θN + 2)
+

c2N

λ2
(13)

It’s straightforward to obtain that ∂E(K(N, θ))/∂c < 0, ∂E(K(N, θ))/∂λ > 0,

∂V ar(K(N, θ))/∂c > 0, and ∂E(K(N, θ))/∂λ < 0. That is, ceteris paribus, lower

holding cost (higher arrival rate) increases (decreases) the expected value (variance) of

total return in both perfect recall and partial recall.
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When recall is perfect, based on Eq. (5) the mean of K(T ) is

E(K(T )) = E(YN(T )) − cT

= B(1 − e−λT ) − B − A

λT
(1 − e−λT − e−λT λT ) − cT (14)

The details are provided in Appendix A.

The variance of K(T ) is

V ar(K(T )) = V ar(YN(T ) − cT )

= V ar(YN(T ))

= E(Y 2
N(T )) − E(YN(T ))

2

= B2 − A2e−λT +
(B − A)2

(λT )2
− (B − Ae−λT + (B − A)

e−λT

λT
)2 (15)

The details are provided in Appendix B.

When recall is partial, the sale price is determined by the equivalent arrival rate

θλ while the holding cost remains unchanged as cT . The mean and variance of the total

return K(T, θ) are:

E(K(T, θ)) = E(YN(T,θ)) − cT

= B(1 − e−θλT ) − B − A

θλT
(1 − e−θλT − e−θλT θλT ) − cT (16)

and

V ar(K(T, θ)) = V ar(YN(T,θ) − cT )

= V ar(YN(T,θ))

= B2 − A2e−θλT +
(B − A)2

(θλT )2
− (B − Ae−θλT + (B − A)

e−θλT

θλT
)2(17)

For the SRTM, the fixed holding cost has no contribution in the variance. So the

variance of total benefit is the same as the variance of the sale price.
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Sale price is of interest for empirical studies because the holding cost is unobserv-

able in most cases. From Eqs. (16) and (17), the mean and variance of the sale price

are:

E(YN(T,θ)) = B(1 − e−θλT ) − B − A

θλT
(1 − e−θλT − e−θλT θλT ) (18)

and

V ar(YN(T,θ)) = B2 − A2e−θλT +
(B − A)2

(θλT )2
− (B − Ae−θλT + (B − A)

e−θλT

θλT
)2. (19)

θ, λ and T play symmetrical roles in the mean and variance of the sale price. A

direct implication of this symmetry is that the seller has to wait more time to maintain

the mean and variance of sale price when the effective arrival rate θλ goes down.

Taking the first derivative of E(YN(T,θ)) with respect to T ,

∂E(YN(T ))

∂T
= Aθλe−θλT +

θλ(1 − e−θλT − e−θλT θλT )

(θλT )2
(B − A) (20)

It’s obvious to see that the first part of Eq. (20), Aθλe−θλT , is positive. The

second part θλ(1−e−θλT −e−θλT θλT )
(θλT )2

(B − A) is also positive. The sum
∑∞

n=1 e−θλT (θλT )n

n!
=

1 − e−θλT < 1 and e−θλT , e−θλT θλT are the first two terms in the sum and all terms

in the sum are positive, so (1 − e−θλT − e−θλT θλT ) > 0. Overall,
∂E(YN(T ))

∂T
> 0. The

(realized) TOM (or θ, or λ by symmetry) is positively related to the expected sale price

and the relationship is nonlinear. This result is consistent with the theoretical finding

of Cheng et al.(2008). The empirical implication of this result is that linear econometric

models on TOM-price relationship are misspecified.

3.2 Opportunity Sets and Efficient Sets

In this section, I conduct analysis and comparison of the stopping rules SRTM and

SRNB based on the classic mean-variance portfolio theory. In my analysis, I assume

that the seller has his mean-variance utility on total benefit K (including the holding
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cost) 3. Hence, the objective of the seller is to maximize E(K)− γV ar(K), γ > 0. The

constant γ measures the degree of risk aversion: the larger the γ is, the more risk averse

the seller is. To compare the opportunities provided by alternative stopping rules, I

borrow the concepts of the opportunity set and the efficient set from the mean-variance

portfolio theory and redefine them in the selling mechanism context.

Definition 1 The opportunity set represents the set of all possible stopping strate-

gies that could be obtained by a selling mechanism. The efficient set represents the set

of stopping strategies that offer maximum expected total benefit for varying levels of

risk and minimum risk for varying levels of expected total benefit that could be obtained

by a selling mechanism.

The risk averse seller will choose his optimal stopping strategy (an optimal stopping

time or stopping number) from the efficient set according to his risk aversion. The

study in this section focuses on the comparison of the opportunity sets and the efficient

sets when the seller faces two alternative selling mechanisms. If the SRTM and the

SRNB are equivalent, their opportunity sets should be the same. If this is the case,

introducing the SRTM to the seller who previously chooses the SRNB does not increase

his set of possible choices and the SRTM is redundant. Another layer of analysis is to

compare whether the efficient set generated by the SRTM (SRNB) is dominated by the

efficient set generated by the SRNB (SRTM). If either of these situations happens, the

optimality of one selling mechanism exists. If the dominance of either efficient set does

not exist, then both the SRTM and the SRNB have their own merits and both should

be considered as viable selling mechanisms.

Using the closed-form mean and variance formulas obtained in Section 3.1, Figure

1 shows the opportunity sets in the classic mean - standard deviation (E - σ) diagram.

Panel (a) shows the opportunity sets when recall is perfect (i.e. θ = 1). Panel (b) shows

3Cheng et al. (2008) use the mean-variance utility only on sale price (excluding the holding cost).
It seems not convincing because the variance of the holding cost is non-zero for the SRNB and should
be taken into account when the seller tries to determine his optimal stopping strategy.
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the opportunity sets when recall is partial, I choose the parameter θ = 0.25 (the same

parameter in the Cheng et al.’s numerical study). Other parameters are:

1) λ = 10 per month (the same as that of Cheng et al.’s numerical study);

2) B = 100, 000, A = 75, 000;

3) c = 3, 000.

For the SRNB, the opportunity set is calculated on N = {5, ..., 60}. For the

SRTM, the opportunity set is calculated on T = N/λ = {0.5, ..., 6}. The opportunity

sets of the two selling mechanisms are both curves 4. The rightmost points of the

opportunity sets are the first pair {N = 5, T = 0.5}. For the SRNB, it represents that

the seller sells his property when the fifth bid is received; for the SRTM, it represents

that the seller waits 0.5 month and then sells the property. The ending points of

both opportunity sets are intended choices. According to the National Association

of Realtors, the average TOM for the U.S. residential market was about six months

during the period of 1989-2004. It’s of empirical interest to compare the total benefit

pair K(T = 6) and K(N = λT = 60) (points labeled in Figure 1 by star and diamond

respectively). Actually, the opportunity sets shown in Figure 1 are parts of the full sets

but they are enough to reveal the important characteristics of the full opportunity sets.

In both panels, K(N = 5) dominates K(T = 0.5) by showing higher expected

total benefit and lower standard deviation (risk). Both points however are not on

the efficient sets. The efficient set of the SRNB is a curve between two points of the

opportunity set. One point is the stopping strategy which gives the highest expected

total benefit. This point represents the maximum mean stopping strategy. The other

point is the stopping strategy which gives the lowest risk. This point represents the

minimum variance stopping strategy.

When θ = 1, using Eq. (10), the maximum mean stopping strategy point of the

SRNB can be obtained analytically by solving the following equation

∂E(K(N))

∂N
=

B − A

(N + 1)2
− c/λ = 0 (21)

4Strictly speaking, the opportunity set of the SRNB is comprised of disjointed points.
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The optimal number of buyers of the maximum mean stopping strategy is N∗
MMS =√

(B − A)λ/c−1. Plugging in the parameters, N∗
MMS =

√
(100, 000− 75, 000)10/3, 000−

1 ≈ 8.

Using Eq. (11), the the minimum variance stopping strategy point of the SRNB

can be obtained by solving the following equation

∂V ar(K(N))

∂N
= −2(B − A)2 N2 + N − 1

(N + 1)3(N + 2)2
+ c2/λ2 = 0 (22)

Plugging in the parameters and solving the equation by numerical root-finding

method, the number of buyers of the minimum variance stopping strategy N∗
MV S ≈ 22.

The efficient set of SRNB when θ = 1 is the curve between {E = 94.82, σ = 2.63}5

(when N = 8) and {E = 92.31, σ = 1.75} (when N = 22).

The efficient set of the SRTM is also a curve between two points. One point repre-

sents the maximum mean stopping strategy and the other one represents the minimum

variance stopping strategy for which the TOM is T = 6.

When θ = 1 ,using Eq. (14), the maximum mean stopping strategy point of the

SRTM can be obtained by solving the following equation:

∂E(K(T ))

∂T
= Aλe−λT +

λ(1 − e−λT − e−λT λT )

(λT )2
(B − A) − c = 0 (23)

Plugging in the parameters and solving the equation by numerical method, the

TOM of the maximum mean stopping strategy T ∗
MMS ≈ 0.9. The efficient set of the

SRTM is the curve between {E = 94.45, σ = 2.86} (when T = 0.9) and {E = 81.58, σ =

0.42} (when T = 6). There exists a global minimum variance point for the SRTM. Using

Eq. (15), limT→+∞ V ar(K(T )) = 0 so T ∗
MV S = ∞. Points representing very short TOM

are not on the efficient set of the SRTM. The non-zero optimal TOM is an intrinsic

feature of the SRTM. The seller needs time to market his property and to attract enough

buyers. When θ < 1, the efficient sets of the SRNB and the SRTM can be determined

by similar approaches.

5Numbers are in thousands.
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It’s interesting that in both panels the point K(T = 6) is not only on the efficient

set of the SRTM but also on the combined efficient set generated by combining the

opportunity sets of the SRTM and the SRNB. The point K(N = 60), however, is not

on the combined efficient set in both panels. In Panel (a), the point K(N = 60) is not

even on the efficient set of the SRNB. Thus when recall is perfect, waiting for N = 60

buyers is not an optimal strategy for any risk averse seller if he only chooses stopping

strategies of the SRNB. When recall is partial, waiting for N = 60 buyers is not an

optimal strategy for any risk averse seller if he chooses stopping strategies from both

the SRTM and the SRNB.

This result is robust under different parameter settings and it suggests that the

average 6 months TOM observed in the U.S. residential market may be better explained

by the SRTM rather than by the SRNB. Of course the interpretation of this result should

not go farther than the mean-variance utility framework.

Overall, Figure 1 demonstrates a selling mechanism to selling mechanism compar-

ison between the SRTM and SRNB. The efficient set of combining the SRTM and the

SRNB is significantly different from the efficient set generated by the SRTM or the

SRNB alone. Both selling mechanisms contribute part of the combined efficient set. If

the seller is less (more) risk averse, he may choose the SRNB (SRTM) to obtain higher

(lower) expected total benefit with higher (lower) associated risk. A direct theoretical

implication of this result is that auctions as a selling mechanism that largely eliminates

the TOM uncertainty are preferred by more risk averse sellers. The result is consistent

with the empirical facts that governments, banks and financially distressed sellers tend

to use auctions as their selling mechanism. Another important theoretical implication

of my result is that a unique and universal optimal selling mechanism does not exist

in real estate market. It’s supported by empirical evidence that both search and auc-

tion markets are used by sellers. Another implication is that the definition of auction

discount (regardless it’s positive, zero or negative) needs to be reexamined. When risk

aversion leads different sellers to choose different stopping strategies within one selling

mechanism, defining the auction discount on a selling mechanism-to-selling mechanism
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basis is not any more valid. If two stopping strategies are randomly chosen from dif-

ferent selling mechanisms, the difference between their expected total benefit could be

positive, zero or negative. An related empirical implication is that researchers should

control more factors than hedonic factors when they estimate auction discounts from

data.

3.3 Auction Discounts and Risk Reductions

My model provides a new way to interpret and analyze auction discounts when risk

is incorporated. When the seller is able to choose different stopping strategies in one

selling mechanism, the auction discount should be defined on the stopping strategy level

rather than on the selling mechanism level. Auction discounts are not necessarily an

economic handicap if the associated risk is reduced. To quantify and analyze auction

discounts and risk reductions, I define the waiting equivalent stopping strategy and

waiting equivalent TOM as follows.

Definition 2 For each stopping strategy N (waiting for N buyers) of the SRNB,

its waiting equivalent stopping strategy is the stopping strategy of the SRTM which

satisfies Twe(N) = N/λ (waiting a fixed time Twe(N)). Twe is the waiting equivalent

TOM.

The average waiting time of waiting for θN buyers is θN/λ = θTwe(N). As shown in

Section 3.2, there are many feasible strategies in one selling mechanism. The definition

of waiting equivalent TOM provides a foundation of strategy-to-strategy comparison

between the comparable strategies of the SRNB and the SRTM.

After defining the waiting equivalent strategy and the waiting equivalent TOM, I

define auction discount and risk reduction as follows.

Definition 3 Auction discount is the difference between the expected total ben-

efit E(K(N, θ)) of one stopping strategy of the SRNB and the expected total benefit
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E(K(Twe(N), θ)) of its waiting equivalent stopping strategy of the SRTM: AD(N, θ) =

E(K(N, θ)) − E(K(Twe(N), θ)).

From Definition 2, cN/λ = cTwe. Plugging this equality into Eqs. (12) and (16),

AD(N, θ) = E(YθN)−E(YTwe,θ). So the auction discount AD(N, θ) is also the difference

between expected sale prices of two comparable strategies.

Definition 4 Risk reduction is the difference between the standard deviation

σ(K(N, θ)) of one stopping strategy of the SRNB and the standard deviation σ(K(Twe(N), θ))

of its waiting equivalent stopping strategy of the SRTM : RR(N, θ) = σ(K(N, θ)) −
σ(K(Twe(N), θ)).

Theorem 1 summarizes several important conclusions on auction discounts and

risk reductions.

Theorem 1 (1) Auction discounts are always positive. (2) Auction discounts

decrease when θ (λ or Twe) increases and θN ≥ 1 (at least one buyer remains for recall).

(3) Auction discounts decrease when buyers’ heterogeneity decreases and θN ≥ 2 (at

least two buyers remain for recall). (4) Risk reductions increase when holding cost c

increases.

Details of the proof are provided in Appendix D.

The first conclusion, positive auction discounts, is consistent with the results ob-

tained by Adams et al. (1992) and Mayer (1995). The second conclusion, auction

discounts decrease when θ increases (i.e. when market is hot and marketing campaign

is efficient), is consistent with the result obtained by Mayer (1995). The third conclu-

sion, auction discounts decrease when buyers’ heterogeneity decreases, is consistent to

the result obtained by Mayer (1995). Buyers’ heterogeneity is closely related to atypical

houses. When a house has unusual features, the distribution of offers tend to have a
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larger variance. Mayer (1995) shows that on-sale houses that are more homogeneous

have a smaller mismatch cost and thus a smaller auction discount. My conclusion is also

loosely consistent with the results obtained by Haurin (1988) and Glower et al. (1998).

They show that when seller’s house is atypical, the TOM is longer and the expected

sale price is higher. The economic intuition of the third conclusion is that when buyers’

private valuations are similar (σb is small), the value of flexible waiting time decreases.

The fourth conclusion is new. None of the previous studies check the risk reduction

associated to the auction discount. The variance of holding cost enters the variance

of the SRNB but not the variance of the SRTM. This is because that the seller who

chooses the SRNB faces TOM uncertainty. The higher the holding cost, the higher the

contribution of the holding cost in the variance of the SRNB which contributes to risk

reductions’ increase.

(Insert Figure 2 here)

Figure 2 illustrates the relationship between auction discounts, θ, risk reductions

and holding cost c at different lengths of waiting equivalent TOM. The parameters

{λ, B, A} chosen are the same as those in Section 3.2. In both panels, auction discounts

are always positive. Auction discounts decrease when the waiting equivalent TOM

is longer. Panel (a) shows that auction discounts increases when θ decreases. Panel

(b) shows the relationship between auction discounts and risk reductions when recall

is perfect (θ = 1). The risk reductions increase when the waiting equivalent TOM

is longer and holding cost is higher. For each risk reductions curve, there exists a

cut-off time when risk reduction is zero. The cut-off time shortens when the holding

cost increases. Auction discounts are compensated by risk reductions when the waiting

equivalent TOM is longer than the cut-off time. When the waiting equivalent TOM is

shorter than the cut-off time, individual SRNB strategies dominate their SRTM waiting

equivalent counterparts by showing higher returns and lower risks. When the waiting

equivalent TOM is longer than the cut-off TOM, the dominance disappears. The seller

will choose his optimal strategy based on his risk aversion.

17



3.4 Holding Cost, Risk Aversion, and TOM

The holding cost c > 0 is a crucial assumption in the selling with recall model. If the

holding cost is zero, the seller is always better off by waiting for the next bidder (or

waiting more time).

Using the cumulative distribution function derived in Appendix C, I show two

dominance results for both the SRNB and the SRTM when the holding cost is zero.

For the SRNB, Pr(K(N) ≤ k) = Fn(k). Since 0 ≤ F (k) ≤ 1 for all k and 0 < F (k) < 1

for some k, Fn(k) ≤ Fn−1(k) for all k and Fn(k) < Fn−1(k) for some k. Thus, waiting for

n buyers dominates waiting for n − 1 buyers by the first-degree stochastic dominance.

Similar result can be obtained for the SRTM. The cumulative distribution function

Pr(K(T ) ≤ k) =
∑∞

n=0 Fn(k)e−λT (λT )n

n!
which is a weighted average of Fn(k) 6. When

T is larger, more weights are put on larger n′s and smaller values of Fn(k). Thus

Pr(K(T1) ≤ k) ≤ Pr(K(T2) ≤ k) when T1 > T2. The equations hold if and only

if k = A or B. Thus waiting T1 dominates waiting T2 by the first-degree stochastic

dominance. In summary, for any investor with utility function U satisfying U ′ > 0

(regardless he is risk neutral, risk averse or risk loving), he always prefers waiting for

more buyers (more time) when the holding cost is zero. This result is independent of

the bid price distribution.

When the holding cost is non-zero, the seller considers the trade-off of the benefit

of waiting and the cost of waiting. The holding cost is an opportunity cost and the

cost can be large. Quan (2002) quotes the Wall Street Journal report which shows the

annual holding cost for commercial property can be as high as 20% of appraised value.

For many households, residential properties have locked in most of their equity (Cocco

2004, Hu 2005). When they sell their houses, a significant amount of equity is available

to consume or invest.

Another important opportunity cost concept in real estate market is the user cost

(cost of house ownership). Himmelberg, Mayer and Sinai (2005) use a formula to

calculate the user cost in the U.S. In their formula they include six components of

6Define F0(k) = ( k−A
B−A)0 = 1.
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the user cost: 1) cost of foregone interest that the homeowner could have earned by

investing in something other than a house; 2) cost of property taxes; 3) tax deductibility

of mortgage interest and property taxes; 4) maintenance costs; 5) expected capital gain

(or loss) of the house; 6) an additional risk premium to compensate homeowners for

the higher risk of owning versus renting. They show that the user cost can vary across

cities and within cities over time. For example, they show that the average user cost in

San Jose is 3.3% and 7.1% in Pittsburgh.

The holding cost is in general higher than the user cost. There are several reasons

to support the argument. First, when estimating the holding cost, the 5th compo-

nent (expected capital gain (or loss) of the house) should be excluded to avoid double

accounting. Because the potential gain/loss is already included in the expected sale

price. In general, houses price grows rather than declines so excluding this component

increases the opportunity cost. Second, other components in the user cost are still valid

components in the holding cost because the owner still occupies the house before the

sale happens. Sirmans et al. (1995) provide evidence that vacant houses have higher

holding cost than those occupied by owners. Third, marketing expenses should be

included in the holding cost.

(Insert Figure 3 here)

Figure 3 illustrates the impacts of the seller’s holding cost and risk aversion on his

optimal TOM if he can only choose the SRTM. The parameters {A, B, c, λ} chosen are

the same as those in Section 3.2. Parameter γ = {0.1, 1, 10} represents different degrees

of risk aversion. Figure 3 shows that the seller’s optimal TOM decreases when his

holding cost increases. The result is consist with a number of previous studies (Sirmans

et al. 1995, Mayer 1995, Cheng et al. 2008). Figure 3 also shows that the seller’s

optimal TOM increases when the seller is more risk averse.

The findings in this section have several empirical implications. Empirical studies

show that real estate returns had extremely low volatility and extremely high risk-

adjusted returns comparing to other asset classes. This is the so-called risk premium

puzzle. Lin and Vandell (2007) and Cheng et al. (2008) suggest that one promising
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approach to understand the puzzle is to adjust the observed sale price and volatility in

illiquid market to their full liquid market counterparts. They show that after adjust-

ments, real estate return is lower and its volatility is higher. Opportunity costs also

provide a way to help explain the risk premium puzzle in real estate market. During

the occupying period of a property, the owner faces the user cost. When the owner puts

the property on sale, he faces the holding cost. These costs can be high and the total

benefit of selling a property can be dramatically lower than that suggested by the sale

prices. When TOM is uncertain, the uncertainty of holding cost increases the volatility

of total benefit which is not captured by sale price volatility. Overall, observed sale

prices tend to overestimate real estate return and underestimate its volatility.

Using the data from Boston condominium market of the early 1990’s, Genesove

and Mayer (1997) find that the seller of a property with a high loan-to-value ratio has a

longer TOM and receives a higher price than a seller with less debt. They argue that an

equity constrained seller has to choose a higher asking price to cover the down payment

for his next property purchase. 7 According to my model, there are at least two other

ways to explain Genesove and Mayer’s empirical finding. First, sellers with high loan-to-

value ratio properties are more risk averse. This argument is by no means far away from

economic intuition. Second, sellers holding high loan-to-value ratio properties have low

holding cost. I use a brief thought experiment to support the low holding cost argument.

Suppose two properties A and B have the same market value. Property A (B) has a

high (low) loan-to-value ratio. The weighted average cost of capitals (WACCs) of these

two properties are different. Property A has lower WACC while property B has higher

WACC. Thus the equity constrained sellers tend to have lower holding cost. The above

thought experiment simplifies the calculation of the holding cost which should include

several other components. Nonetheless, it provides a straightforward way to show the

difference. To conclude, more risk averse seller with lower holding cost will wait longer

and obtain higher sale price.

7Genesove and Mayer (2001) further find that loss aversion contributes more than equity constraint
in explaining the seller’s behavior. I will discuss downside risk in Section 4.
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4 Downside Risk Analysis

In this section, I extend the mean-variance analysis by analyzing the downside risk the

seller faces. The mean-variance utilities are widely used to model risk averse agents

in the finance and economics literature. They provide approximations of the utility

functions up to the second order expansion. However, the use of variance as a risk

measure is valid only if the seller’s utility function is quadratic or the total benefit

distributions differ by scale and location parameters (e.g. normal distributions). The

seller’s utility function may not be quadratic. Genesove and Mayer (2001) show that

sellers of residential properties have strong loss aversion. When sellers have strong loss

aversion, they focus their attention on downside risk. The seller’s utility function may

even change over time. Albrechet, Anderson, Smith and Vroman (2007) show a search

model in which both buyers and sellers begin with relaxed states and move to desperate

states if there is no match. Non-normality of total benefits is clear to see when the upper

and lower bounds of total benefit of selling mechanisms are considered.

4.1 Upper and Lower Bounds of Total Benefit

For the SRNB, the seller’s waiting time can go to infinity when the optimal bidder

arrives. The highest price the seller can get is B which is finite. Thus the upper bound

of the total benefit is B and the lower bound is −∞. The seller faces a potential cost

blow-out. For the SRNB, K(N, θ) is on a continuous support [−∞, B].

For the SRTM, the worst scenario happens when no bidder arrives during the

planned TOM. Auctions are unsuccessful in this scenario. The total benefit is negative

and is equal to the holding cost −cT . −cT is the lower bound of K(T, θ). When

time reaches the planned TOM, the probability of getting no bidder is e−θλT which is

non-zero. The probability of successful auctions increases when the market is good and

the seller is efficient in attracting buyers. Ong, Lusht and Mak (2005) show empirical

evidence that more bidder turnout (a proxy for the number of buyers at an auction),

efficient auction houses and good market condition contribute to successful auction
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outcomes. When one or more buyers come, the maximum price the seller can get is B,

the upper bound of K is B−cT and K(T, θ) is on a continuous support [A−cT, B−cT ].

Overall, K(T, θ) is on the union [−cT ]∪ [A− cT, B − cT ]. The SRTM has larger lower

bound and smaller upper bound comparing to the SRNB.

By analyzing the upper and lower bounds of total benefits it’s clear that the total

benefits for both the SRNB and the SRTM are not normally distributed. Downside

risks need to be considered when the seller makes his selling mechanism choices.

4.2 Certainty Equivalent TOM

How to compare the downside risks of the SRTM and the SRNB remains an issue. As

shown in Theorem 1, the expected total benefit E(K(N, θ)) > E(K(Twe(N), θ)). How-

ever, it’s desirable to compare the downside risks on pairs of {N, T} when E(K(N, θ)) =

E(K(T, θ)). The seller may want to minimize his downside risk given certain level of

expected total benefit. This requirement is partially achieved by defining the certainty

equivalent stopping strategy and certainty equivalent TOM as follows.

Definition 5 For each stopping strategy N in SRNB, its certainty equivalent stop-

ping strategy is the strategy of the SRTM which satisfies E(K(N, θ)) = E(K(Tce(N), θ)).

Tce(N) is the certainty equivalent TOM.

The certainty equivalent TOM can be numerically obtained by solving the T from

the following non-linear equation: θNB+A
θN+1

− cN
λ

= B(1 − e−θλT ) − B−A
θλT

(1 − e−θλT −
e−θλT θλT ) − cT . There are two properties of the certainty equivalent TOM. First, for

some N , Tce(N) does not exist. Second, for some N , there exist two possible values of

Tce(N). Both situations are clear to see in Figure 1. When there are more than one

certainty equivalent TOM, I choose the longer one in my numerical study below.
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4.3 Value at Risk and Expected Shortfall

I use two widely used measures, value at risk (VaR) and expected shortfall (ES), to

measure the downside risks of comparable strategies in alternative selling mechanisms.

VaR and ES are widely used in the finance literature and financial industry (see, e.g.

Duffie and Pan 1997, Frey and McNeil 2002). VaR is recommended by the Basel Com-

mittee for Banking Regulation to establishing a bank’s capital adequacy requirements.

Despite these two measures’ large impacts on finance, few real estate studies adopt

them to measure downside risks 8.

The definitions of value at risk and expected shortfall are as follows.

Definition 6 Value at Risk (VaR): Given a confidence level α, the VaR at confi-

dence level α is the smallest value l such that the probability that the loss L exceeds l

is no larger than 1 − α. In other words,

V aRα = inf{l ∈ R : FL(l) ≥ α} (24)

Statistically, VaR is the lower α-quantile in terms of a generalized inverse of the

distribution function FL.

Definition 7 Expected Shortfall (ES): For a continuous loss distribution with∫
R
|l|dFL(l) < ∞, the ESα at confidence level α ∈ (0, 1) for loss L is:

ESα = E(L|L ≥ V aRα) =

∫ ∞
V aRα

ldFL(l)

1 − α
(25)

In my study, I calculate VaR and ES with respect to K and its distribution. Higher

values of VaR and ES imply smaller downside risk. One way to obtain risk measures

VaR and ES numerically is through numerical integration. The cumulative distribution

functions and probability density functions of K(T, θ) and K(N, θ) have explicit forms

and can be used for numerical integration. Details are provided in Appendix C. An-

other way is through the Monte Carlo simulation. I use this approach in my numerical

study. The simulation algorithms of homogeneous Poisson arrival and arrival time are

8An exception is Gan and Hill (2009). They adapt VaR to measure housing affordability.
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well known (e.g. Kao 1997, page 52). I use the following augmented algorithms to

simulate K:

Algorithm 1 - SRTM, simulation of K(T, θ)

Set A, B, c, T, θ, λ.

for i=1, 2, ..., M

Generate uniform random variable Uj ∼ U(0, 1), j = 1, 2, ..., until the condition

U1...Un ≥ e−θλT is violated for the first time. Let UN be the last uniform random

variable obtained, the simulated N(T ) is then given by N − 1.

Generate N(T ) uniform random variables Yj ∼ U(A, B), j = 1, ..., N(T ) and

choose the highest value Ymax of them 9.

K(i) = Ymax − cT

end (for)

Algorithm 2 - SRNB, simulation of K(N, θ)

Set A, B, c, N, θ, λ.

for i=1, 2, ..., M

Generate U ∼ U(0, 1).

T = −(1/λ)log(U).

Generate N uniform random variables Yi ∼ U(A, B), j = 1, ..., N and choose the

highest value Ymax of them.

K(i) = Ymax − cT

end (for)

I simulate M = 100, 000 independent observations of K and calculate VaR and ES

based on simulated observations. The program is written in MATLAB. The parameters

{λ, B, A, c} chosen are the same as those in Section 3.2. I examine both the perfect

recall (θ = 1) and the partial recall (θ = 0.25). Confidence level α = 0.99. I choose

9Results of an English auction can be obtained by choosing the second highest value in this step.
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N = {8, 16, 32, 64} so that θN are integers.

Table 2 listed the simulation results. For the SRNB, when recall is perfect, N = 8

gives the highest mean. N = 16 gives the smallest downside risk and the smallest

standard deviation. N = 16 gives a good example in which the downside risk is high

when the expected total benefit is high and volatility is low. The V aR0.99 is 88.26

(thousands) which represents a 6% discount comparing to the expected total benefit.

When recall is partial, N = 16 gives the highest mean, N = 32 gives the smallest

downside risk, and N = 64 gives the smallest standard deviation. For the SRTM, when

recall is perfect, Tce = 1.55 (months) gives the highest mean and the smallest downside

risk, Tce = 6.40 (months) gives the smallest standard deviation. When recall is partial,

downside risk rankings are inconsistently given by VaR and ES. VaR suggests that

Tce = 3 (months) has smaller downside risk while ES suggests that Tce = 6.27 (months)

has smaller downside risk 10.

When conducting cross selling mechanism comparison, it’s obvious in Table 2 that

risk neutral, risk averse and loss averse sellers will choose different optimal stopping

strategies of different selling mechanisms. Two strategies with the same expected total

return may be preferred by different sellers. For example, when recall is perfect, N = 16

and Tce = 1.55 (months) give the same expected total benefit. Mean-variance utility

sellers will choose Tce = 1.55 (months) because of its lower standard deviation. Down-

side risk minimizers however will choose N = 16 instead because of its lower downside

risks. Again, a unique and universal optimal selling mechanism for all sellers does not

exist.

The results in this section emphasize the importance of downside risks. The down-

side risks of selling properties are closely related to TOM uncertainty. The great reces-

sion of 2007/2009 re-emphasizes the importance of quantifying and measuring downside

risks in real estate market.

10Since the seminal work of Artzner, Delbaen, Eber and Heath (1999) it is now well known that VaR
is not a coherent risk measure and ES is a coherent risk measure.

25



5 Conclusion

Conventional wisdom tells us that modern finance theory is a branch of applied mi-

croeconomics. In this article, I show that the modern finance theory sheds light on a

conventional microeconomic problem. Mean-variance analysis and downside risk analy-

sis help advance the understanding of optimal selling mechanism problem in real estate

market. I show that risk aversion, holding cost and downside risk are important fac-

tors influencing sellers’ selling mechanism choices. Different sellers may choose different

optimal selling mechanism so the notion of “optimal mechanism” is user dependent.

In reality English auctions dominate the real estate market (Mayer 1995, Ong 2006).

Further numerical study can be done by using the algorithm provided in Section 4.

In my study, I use the selling with recall framework. It’s also of interest to analyze a

traditional selling without recall model. How to adapt downside risk measures so that

they can be used in real estate market deserves more study. Much remains to be done

in cross-country comparison of selling mechanisms. In New Zealand and Australia, auc-

tions are used more frequently than in the United States. This difference may be driven

by the micro-factors analyzed in this article.
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Appendix A

I prove several auxiliary results first.

∞∑
n=1

e−λT (λT )n

n!
= 1 − e−λT (26)

∞∑
n=1

1

n + 1
e−λT (λT )n

n!

=
1

λT

∞∑
n=1

e−λT (λT )n+1

(n + 1)!

=
1

λT

∞∑
m=2

e−λT (λT )m

m!

=
1

λT
(1 − e−λT − λTe−λT ) (27)

∞∑
n=1

1

n + 2
e−λT (λT )n

n!

=

∞∑
n=1

n + 1

(λT )2
e−λT (λT )(n+2)

(n + 2)!

=
1

(λT )2

∞∑
m=3

(m − 1)e−λT (λT )m

m!

=
1

(λT )2
(λT − 1 + e−λT − e−λT (λT )2/2) (28)
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Proof of E(K(T )). From Eq. (14),

E(YN(T )) = E(E(YN(T )|N(T ) = n))

=

∞∑
n=1

nB + A

n + 1
e−λT (λT )n

n!

=
∞∑

n=1

(
B − B − A

n + 1

)
e−λT (λT )n

n!

= B
∞∑

n=1

e−λT (λT )n

n!
− (B − A)

∞∑
n=1

1

n + 1
e−λT (λT )n

n!

= B(1 − e−λT ) − B − A

λT
(1 − e−λT − e−λT λT )

Then E(K(T )) = E(YN(T ))− cT = B(1− e−λT )− B−A
λT

(1− e−λT − e−λT λT )− cT .
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Appendix B

Proof of V ar(K(T )).

E(Y 2|N(T ) = n; n = 0) = 0

E(Y 2|N(T ) = n; n ≥ 1) =

∫ B

A

y2fn(y)dy

=

∫ B

A

y2dFn(y)

= y2Fn(y)|BA −
∫ B

A

Fn(y)dy2

= B2 −
∫ B

A

2yFn(y)dy

= B2 − 2

∫ B

A

y

(
y − A

B − A

)n

dy

= B2 − 2

∫ B

A

(y − A)n+1

(B − A)n
dy − 2

∫ B

A

A

(
y − A

B − A

)n

dy

= B2 − 2

∫ B−A

0

zn+1

(B − A)n
dz − 2A

∫ B−A

0

zn

(B − A)n
dz

= B2 − 2(B − A)2 1

n + 2
− 2A(B − A)

1

n + 1

E(Y 2
N(T )) = E(E(Y 2|N(T ) = n))

= B2

∞∑
n=1

e−λT (λT )n

n!
− 2(B − A)2

∞∑
n=1

1

n + 2
e−λT (λT )n

n!

−2A(B − A)

∞∑
n=1

1

n + 1
e−λT (λT )n

n!

= B2(1 − e−λT ) − 2(B − A)2 1

(λT )2
(λT − 1 + e−λT − e−λT (λT )2/2)

−2A(B − A)
1

λT
(1 − e−λT − λTe−λT )

Using the formula V ar(Y 2
N(T )) = E(Y 2

N(T ))−E(YN(T ))
2 and collecting all terms, V ar(K(T )) =

V ar(Y 2
N(T )) = B2 − A2e−λT + (B−A)2

(λT )2
− (B − Ae−λT + (B − A) e−λT

λT
)2. The work of col-

lecting terms is tedious. Step-by-step details can be obtained from the author upon

request. One way to double check the formula is to use the simulation algorithm listed

in Section 4.
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Appendix C

The cumulative distribution functions and probability density functions of total benefit

K(T, θ) (for the SRTM) and K(N, θ) (for the SRNB).

First I consider the distribution of K(N, θ). Using convolution, results in Table 1

and Eq. (1), the cumulative distribution function is

Pr(K(N, θ) ≤ k) =

∫ ∞

0

FθN (k + ct)gN(t)dt =

∫ ∞

0

(
k + ct − A

B − A

)θN

λe−λt (λt)N−1

(N − 1)!
dt

Differentiating w.r.t. k, the probability density function is

pN (k) =

∫ ∞

0

fθN(k + ct)gN(t)dt =

∫ ∞

0

θN

(
k + ct − A

B − A

)θN−1
1

B − A
λe−λt (λt)N−1

(N − 1)!
dt

Then I consider the distribution of K(T, θ). The cumulative distribution function

is

Pr(K(T, θ) ≤ k) =

∞∑
n=1

Fn(k + cT )Pr(N(T ) = n) + I(k = −cT )Pr(N(T ) = 0)

= I(A − cT ≤ k ≤ B − cT )

∞∑
n=1

(
k + cT − A

B − A

)n

e−θλT (θλT )n

n!

+I(k = −cT )e−θλT

I(.) is the indicator function.

Differentiating w.r.t. k, the probability density function is

qT (k) =

∞∑
n=1

fn(k + cT )Pr(N(T ) = n) + I(k = −cT )Pr(N(T ) = 0)

= I(A − cT ≤ k ≤ B − cT )
∞∑

n=1

n

(
k + cT − A

B − A

)n−1
1

B − A
e−θλT (θλT )n

n!

+I(k = −cT )e−θλT
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Appendix D

Proof of Theorem 1.

(1) Let X = θN = θλTwe(N).

AD(N, θ) = E(K(N, θ)) − E(K(Twe(N), θ))

= B − B − A

X + 1
− B(1 − e−X) +

B − A

X
(1 − e−X − Xe−X)

= Ae−X +
B − A

X(X + 1)
(1 − e−X − Xe−X) (29)

> 0

In the last step, the sum
∑∞

n=1 e−X Xn

n!
= 1 − e−X ,e−X , Xe−X are the first two terms

and all terms in the sum are positive, so 1 − e−X − Xe−X > 0.

(2)
∂AD(N, θ)

∂X
= −Ae−X + (B − A)

e−X(X + 1)3 − (2X + 1)

X2(X + 1)2
(30)

It’s obvious that −Ae−X < 0. When X = 1, e−X(X + 1)3 − (2X + 1) < 0. Let

h(X) = e−X(X + 1)3 − (2X + 1), h′(X) = e−X(X + 1)2(2 − X) − 2 < 0 when X ≥ 1.

So (B − A) e−X(X+1)3−(2X+1)
X2(X+1)2

< 0 and ∂AD(N)
∂X

< 0 when X ≥ 1. ∂AD(N)
∂θ

= ∂AD(N)
∂X

∂X
∂θ

=
∂AD(N)

∂X
λTwe < 0. Due to the symmetry, ∂AD(N)

∂λ
< 0 and ∂AD(N)

∂Twe
< 0

(3) Using the results in Table 1, the mean and standard deviation of bid price

distribution are μb = (B + A)/2 and σb = (B − A)/2
√

3. Thus, A = μb −
√

3σb and

B − A = 2
√

3σb. Plugging these results into Eq. (29),

AD(N, θ) = μbe
−X +

[
2
√

3(1 − e−X − Xe−X)

X(X + 1)
−
√

3e−X

]
σb

= μbe
−X +

2 − e−X(X + 2)(X + 1)

X(X + 1)

√
3σb (31)

When X = 2, 2 − e−X(X + 2)(X + 1) > 0. Let h2(X) = 2 − e−X(X + 2)(X + 1),

h′
2(X) = e−X(X2 + X − 1) > 0 when X ≥ 2. So 2 − e−X(X + 2)(X + 1) > 0 and

∂AD(N,θ)
∂σb

= 2−e−X(X+2)(X+1)
X(X+1)

√
3 > 0 when X ≥ 2.

(4) From Eqs. (13) and (17) and Definition 4, RR(N, θ) = θN(B−A)2

(θN+1)2(θN+2)
+ c2N

λ2 −
B2 − A2e−θλT + (B−A)2

(θλT )2
− (B − Ae−θλT + (B − A) e−θλT

θλT
)2.

∂RR(N,θ)
∂c

= 2cN/λ2 > 0.
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Tables

F (X) f(X) Fn(Y ) fn(Y )

dX−A
B−A

1

B − A

(
Y − A

B − A

)n

n

(
Y − A

B − A

)n−1
1

B − A
E(X) V ar(X) E(Yn) V ar(Yn)
A + B

2

(B − A)2

12

nB + A

n + 1

n(B − A)2

(n + 1)2(n + 2)

Table 1: Cumulative distribution functions, probability density functions,
means and variances of a uniform random variable X ∼ U(A, B) and the maximum
value of n i.i.d. uniform random variables Yn = max(X1, ..., Xn).

θ = 1 θ = 0.25
E(K) σK V aR0.99 ES0.99 E(K) σK V aR0.99 ES0.99

N = 8 94.83 2.62 86.37 84.99 N = 8 89.27 5.95 74.92 73.91
Tce(NA) Tce(NA)
N = 16 93.72 1.84 88.26 87.10 N = 16 90.20 4.25 77.88 76.23

Tce = 1.55 - 1.61 87.90 86.33 Tce(NA)
N = 32 89.63 1.85 84.84 83.93 N = 32 87.62 3.03 78.57 76.84

Tce = 3.19 - 0.78 86.83 86.07 Tce = 3.00 - 3.97 75.61 68.49
N = 64 80.40 2.43 74.38 73.37 N = 64 79.33 2.79 72.03 70.68

Tce = 6.40 - 0.39 79.03 78.64 Tce = 6.27 - 1.56 73.74 72.24

Table 2: Means, standard deviations, value at risks and expected shortfalls
of stopping strategies N = {8, 16, 32, 64} of the SRNB and their certainty equivalent
stopping strategies of the SRTM . Calculations are based on 100,000 independent Monte
Carlo simulation runs with parameter set {λ = 10, B = 100, 000, A = 75, 000, c =
3, 000}. Confidence level α = 0.99. Results of both perfect recall (θ = 1) and partial
recall (θ = 0.25) are listed. Numbers are in thousands.
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Figure 1: Opportunity sets of the SRTM and the SRNB. Parameter set of both panels
is {λ = 10, B = 100, 000, A = 75, 000, c = 3, 000}. Panel (a) shows the opportunity
sets when recall is perfect (θ = 1). Panel (a) shows the opportunity sets when recall is
partial (θ = 0.25).
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Figure 2: Auction discounts and risk reductions. Parameter set of both panels is
{λ = 10, B = 100, 000, A = 75, 000}. For panel (a), c = 3, 000; for panel (b), θ = 1.
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Figure 3: Optimal time on market when the holding cost and the seller’s risk aversion
changes. Parameter set is {λ = 10, B = 100, 000, A = 75, 000}.
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